These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38447575)

  • 21. SLAPP: Subgraph-level attention-based performance prediction for deep learning models.
    Wang Z; Yang P; Hu L; Zhang B; Lin C; Lv W; Wang Q
    Neural Netw; 2024 Feb; 170():285-297. PubMed ID: 38000312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction.
    Zhao X; Zhao X; Yin M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph Representation Learning Based on Specific Subgraphs for Biomedical Interaction Prediction.
    Pang H; Wei S; Du Z; Zhao Y; Cai S; Zhao Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024 May; PP():. PubMed ID: 38767994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CPGL: Prediction of Compound-Protein Interaction by Integrating Graph Attention Network With Long Short-Term Memory Neural Network.
    Zhao M; Yuan M; Yang Y; Xu SX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1935-1942. PubMed ID: 36445995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.
    Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y
    Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model.
    Zhang Y; Li J; Lin S; Zhao J; Xiong Y; Wei DQ
    J Cheminform; 2024 Jun; 16(1):67. PubMed ID: 38849874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural Networks.
    Fu X; King I
    Neural Netw; 2024 Feb; 170():266-275. PubMed ID: 38000310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization.
    Yu Y; Huang K; Zhang C; Glass LM; Sun J; Xiao C
    Bioinformatics; 2021 Sep; 37(18):2988-2995. PubMed ID: 33769494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GraphPLBR: Protein-Ligand Binding Residue Prediction With Deep Graph Convolution Network.
    Wang W; Sun B; Yu M; Wu S; Liu D; Zhang H; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2223-2232. PubMed ID: 37022086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HGDTI: predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network.
    Yu L; Qiu W; Lin W; Cheng X; Xiao X; Dai J
    BMC Bioinformatics; 2022 Apr; 23(1):126. PubMed ID: 35413800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SEGCECO: Subgraph Embedding of Gene expression matrix for prediction of CEll-cell COmmunication.
    Vasighizaker A; Hora S; Zeng R; Rueda L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38605638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. End-to-end learning for compound activity prediction based on binding pocket information.
    Tanebe T; Ishida T
    BMC Bioinformatics; 2021 Oct; 22(Suppl 3):529. PubMed ID: 34715777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach.
    Li R; Yin C; Yang S; Qian B; Zhang P
    J Med Internet Res; 2020 Sep; 22(9):e20645. PubMed ID: 32985996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D graph neural network with few-shot learning for predicting drug-drug interactions in scaffold-based cold start scenario.
    Lv Q; Zhou J; Yang Z; He H; Chen CY
    Neural Netw; 2023 Aug; 165():94-105. PubMed ID: 37276813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive Subgraph Neural Network With Reinforced Critical Structure Mining.
    Li J; Sun Q; Peng H; Yang B; Wu J; Yu PS
    IEEE Trans Pattern Anal Mach Intell; 2023 Jul; 45(7):8063-8080. PubMed ID: 37018637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.