BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38447582)

  • 1. Reciprocal Regulation of Cardiac β-Oxidation and Pyruvate Dehydrogenase by Insulin.
    Elnwasany A; Ewida HA; Menendez-Montes I; Mizerska M; Fu X; Kim CW; Horton JD; Burgess SC; Rothermel BA; Szweda PA; Szweda LI
    J Biol Chem; 2024 May; ():107412. PubMed ID: 38796064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of hepatic acetyl-CoA carboxylase by S-nitrosylation in response to diet.
    Venetos NM; Stomberski CT; Qian Z; Premont RT; Stamler JS
    J Lipid Res; 2024 May; 65(5):100542. PubMed ID: 38641009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaplerotic roles of pyruvate carboxylase in mammalian tissues.
    Jitrapakdee S; Vidal-Puig A; Wallace JC
    Cell Mol Life Sci; 2006 Apr; 63(7-8):843-54. PubMed ID: 16505973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetyl-CoA carboxylase-a as a novel target for cancer therapy.
    Wang C; Rajput S; Watabe K; Liao DF; Cao D
    Front Biosci (Schol Ed); 2010 Jan; 2(2):515-26. PubMed ID: 20036965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetyl-CoA Carboxylases and Diseases.
    Wang Y; Yu W; Li S; Guo D; He J; Wang Y
    Front Oncol; 2022; 12():836058. PubMed ID: 35359351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability.
    Deja S; Fletcher JA; Kim CW; Kucejova B; Fu X; Mizerska M; Villegas M; Pudelko-Malik N; Browder N; Inigo-Vollmer M; Menezes CJ; Mishra P; Berglund ED; Browning JD; Thyfault JP; Young JD; Horton JD; Burgess SC
    Cell Metab; 2024 May; 36(5):1088-1104.e12. PubMed ID: 38447582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice.
    Harada N; Oda Z; Hara Y; Fujinami K; Okawa M; Ohbuchi K; Yonemoto M; Ikeda Y; Ohwaki K; Aragane K; Tamai Y; Kusunoki J
    Mol Cell Biol; 2007 Mar; 27(5):1881-8. PubMed ID: 17210641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents.
    Goedeke L; Bates J; Vatner DF; Perry RJ; Wang T; Ramirez R; Li L; Ellis MW; Zhang D; Wong KE; Beysen C; Cline GW; Ray AS; Shulman GI
    Hepatology; 2018 Dec; 68(6):2197-2211. PubMed ID: 29790582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate-Carboxylase-Mediated Anaplerosis Promotes Antioxidant Capacity by Sustaining TCA Cycle and Redox Metabolism in Liver.
    Cappel DA; Deja S; Duarte JAG; Kucejova B; Iñigo M; Fletcher JA; Fu X; Berglund ED; Liu T; Elmquist JK; Hammer S; Mishra P; Browning JD; Burgess SC
    Cell Metab; 2019 Jun; 29(6):1291-1305.e8. PubMed ID: 31006591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Acetyl-CoA Carboxylase 1 Inhibitor Improves Hepatic Steatosis and Hepatic Fibrosis in a Preclinical Nonalcoholic Steatohepatitis Model.
    Tamura YO; Sugama J; Iwasaki S; Sasaki M; Yasuno H; Aoyama K; Watanabe M; Erion DM; Yashiro H
    J Pharmacol Exp Ther; 2021 Nov; 379(3):280-289. PubMed ID: 34535562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation.
    Bates J; Vijayakumar A; Ghoshal S; Marchand B; Yi S; Kornyeyev D; Zagorska A; Hollenback D; Walker K; Liu K; Pendem S; Newstrom D; Brockett R; Mikaelian I; Kusam S; Ramirez R; Lopez D; Li L; Fuchs BC; Breckenridge DG
    J Hepatol; 2020 Oct; 73(4):896-905. PubMed ID: 32376414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hepatic mitochondrial pyruvate carrier deficiency on
    Yiew NKH; Deja S; Ferguson D; Cho K; Jarasvaraparn C; Jacome-Sosa M; Lutkewitte AJ; Mukherjee S; Fu X; Singer JM; Patti GJ; Burgess SC; Finck BN
    iScience; 2023 Nov; 26(11):108196. PubMed ID: 37942005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization.
    Onodera T; Wang MY; Rutkowski JM; Deja S; Chen S; Balzer MS; Kim DS; Sun X; An YA; Field BC; Lee C; Matsuo EI; Mizerska M; Sanjana I; Fujiwara N; Kusminski CM; Gordillo R; Gautron L; Marciano DK; Hu MC; Burgess SC; Susztak K; Moe OW; Scherer PE
    Nat Commun; 2023 Oct; 14(1):6531. PubMed ID: 37848446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl-CoA.
    Ngo J; Choi DW; Stanley IA; Stiles L; Molina AJA; Chen PH; Lako A; Sung ICH; Goswami R; Kim MY; Miller N; Baghdasarian S; Kim-Vasquez D; Jones AE; Roach B; Gutierrez V; Erion K; Divakaruni AS; Liesa M; Danial NN; Shirihai OS
    EMBO J; 2023 Jun; 42(11):e111901. PubMed ID: 36917141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolites as signalling molecules.
    Baker SA; Rutter J
    Nat Rev Mol Cell Biol; 2023 May; 24(5):355-374. PubMed ID: 36635456
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.