These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38447849)

  • 1. Identification and characterization of repurposed small molecule inhibitors of Mycobacterium tuberculosis caseinolytic protease B (ClpB) as anti-mycobacterials.
    Singh D; Sharma R; Jamal S; Agarwal M; Grover S; Batra JK
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130614. PubMed ID: 38447849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of a substrate binding pocket in the amino terminal domain of
    Singh D; Tripathi P; Sharma R; Grover S; Batra JK
    J Biomol Struct Dyn; 2024 Aug; 42(12):6189-6199. PubMed ID: 37418201
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors.
    Singh P; Khurana H; Yadav SP; Dhiman K; Singh P; Ashish ; Singh R; Sharma D
    Int J Biol Macromol; 2020 Dec; 165(Pt A):375-387. PubMed ID: 32987071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress.
    Harnagel A; Lopez Quezada L; Park SW; Baranowski C; Kieser K; Jiang X; Roberts J; Vaubourgeix J; Yang A; Nelson B; Fay A; Rubin E; Ehrt S; Nathan C; Lupoli TJ
    Mol Microbiol; 2021 Feb; 115(2):272-289. PubMed ID: 32996193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClpB is an essential stress regulator of Mycobacterium tuberculosis and endows survival advantage to dormant bacilli.
    Tripathi P; Singh LK; Kumari S; Hakiem OR; Batra JK
    Int J Med Microbiol; 2020 Apr; 310(3):151402. PubMed ID: 32014406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK.
    Lupoli TJ; Fay A; Adura C; Glickman MS; Nathan CF
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7947-E7956. PubMed ID: 27872278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino-terminal domain of
    Tripathi P; Parijat P; Patel VK; Batra JK
    FEBS Open Bio; 2018 Oct; 8(10):1669-1690. PubMed ID: 30338218
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system.
    Yin Y; Feng X; Yu H; Fay A; Kovach A; Glickman MS; Li H
    Cell Rep; 2021 May; 35(8):109166. PubMed ID: 34038719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK.
    Schlee S; Beinker P; Akhrymuk A; Reinstein J
    J Mol Biol; 2004 Feb; 336(1):275-85. PubMed ID: 14741222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing.
    Dwivedi M; Mukhopadhyay S; Yadav S; Dubey KD
    Comput Biol Med; 2022 Jul; 146():105607. PubMed ID: 35617724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylated Flavonoid Compounds as Potent CYP121 Inhibitors of
    Bajrai LH; Khateb AM; Alawi MM; Felemban HR; Sindi AA; Dwivedi VD; Azhar EI
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP hydrolysis-coupled peptide translocation mechanism of
    Yu H; Lupoli TJ; Kovach A; Meng X; Zhao G; Nathan CF; Li H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9560-E9569. PubMed ID: 30257943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual screening to identify novel potential inhibitors for Glutamine synthetase of
    Kumari M; Subbarao N
    J Biomol Struct Dyn; 2020 Oct; 38(17):5062-5080. PubMed ID: 31755360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum.
    Ngansop F; Li H; Zolkiewska A; Zolkiewski M
    Biochem Biophys Res Commun; 2013 Sep; 439(2):191-5. PubMed ID: 23994135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system.
    Glaza P; Ranaweera CB; Shiva S; Roy A; Geisbrecht BV; Schoenen FJ; Zolkiewski M
    J Biol Chem; 2021; 296():100079. PubMed ID: 33187983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
    Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B
    J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae.
    Kaur G; Pandey B; Kumar A; Garewal N; Grover A; Kaur J
    J Biomol Struct Dyn; 2019 Mar; 37(5):1254-1269. PubMed ID: 29557724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyldepsipeptide Antibiotics and a Bioactive Fragment Thereof Differentially Perturb
    Schmitz KR; Handy EL; Compton CL; Gupta S; Bishai WR; Sauer RT; Sello JK
    ACS Chem Biol; 2023 Apr; 18(4):724-733. PubMed ID: 32083462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors.
    Kumar R; Garg P; Bharatam PV
    J Biomol Struct Dyn; 2015; 33(5):1082-93. PubMed ID: 24875451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.