These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38447910)
1. Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside. Marsan CB; Lee SG; Nguyen A; Gordillo Sierra AR; Coleman SM; Brooks SM; Alper HS Metab Eng; 2024 May; 83():1-11. PubMed ID: 38447910 [TBL] [Abstract][Full Text] [Related]
2. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Marinova K; Kleinschmidt K; Weissenböck G; Klein M Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. Lv Y; Marsafari M; Koffas M; Zhou J; Xu P ACS Synth Biol; 2019 Nov; 8(11):2514-2523. PubMed ID: 31622552 [TBL] [Abstract][Full Text] [Related]
4. Production of Flavonoid 7-O-glucosides by Bioconversion Using Escherichia coli Expressing a 7-O-glucosyltransferase from Tobacco (Nicotiana tabacum). Dorjjugder N; Taguchi G Appl Biochem Biotechnol; 2022 Jul; 194(7):3320-3329. PubMed ID: 35347669 [TBL] [Abstract][Full Text] [Related]
5. Whole-cell bioconversion of naringenin to high added value hydroxylated compounds using Yarrowia lipolytica 2.2ab in surface and liquid cultures. Hernández-Guzmán C; Prado-Barragán A; Gimeno M; Román-Guerrero A; Rutiaga-Quiñones OM; Rocha Guzmán NE; Huerta-Ochoa S Bioprocess Biosyst Eng; 2020 Jul; 43(7):1219-1230. PubMed ID: 32144595 [TBL] [Abstract][Full Text] [Related]
6. Production of flavonol and flavone 6-C-glucosides by bioconversion in Escherichia coli expressing a C-glucosyltransferase from wasabi (Eutrema japonicum). Dorjjugder N; Hatano M; Taguchi G Biotechnol Lett; 2021 Sep; 43(9):1913-1919. PubMed ID: 34302563 [TBL] [Abstract][Full Text] [Related]
7. Production of Four Flavonoid Chong Y; Kim BG; Park YJ; Yang Y; Lee SW; Lee Y; Ahn JH J Agric Food Chem; 2023 Apr; 71(13):5302-5313. PubMed ID: 36952620 [TBL] [Abstract][Full Text] [Related]
8. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Yu A; Zhao Y; Li J; Li S; Pang Y; Zhao Y; Zhang C; Xiao D Microbiologyopen; 2020 Jul; 9(7):e1051. PubMed ID: 32342649 [TBL] [Abstract][Full Text] [Related]
9. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Wang H; Yang Y; Lin L; Zhou W; Liu M; Cheng K; Wang W Microb Cell Fact; 2016 Aug; 15(1):134. PubMed ID: 27491546 [TBL] [Abstract][Full Text] [Related]
10. Biological synthesis of 7-O-methyl Apigenin from naringenin using escherichia coli expressing two genes. Jeon YM; Kim BG; Ahn JH J Microbiol Biotechnol; 2009 May; 19(5):491-4. PubMed ID: 19494697 [TBL] [Abstract][Full Text] [Related]
11. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica. Lv Y; Edwards H; Zhou J; Xu P ACS Synth Biol; 2019 Mar; 8(3):568-576. PubMed ID: 30695641 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli. Lee H; Kim BG; Kim M; Ahn JH J Microbiol Biotechnol; 2015 Sep; 25(9):1442-8. PubMed ID: 25975614 [TBL] [Abstract][Full Text] [Related]
13. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Wei W; Zhang P; Shang Y; Zhou Y; Ye BC Bioresour Technol; 2020 Oct; 314():123726. PubMed ID: 32622278 [TBL] [Abstract][Full Text] [Related]
14. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827 [TBL] [Abstract][Full Text] [Related]
15. Engineering co-culture system for production of apigetrin in Escherichia coli. Thuan NH; Chaudhary AK; Van Cuong D; Cuong NX J Ind Microbiol Biotechnol; 2018 Mar; 45(3):175-185. PubMed ID: 29362971 [TBL] [Abstract][Full Text] [Related]
16. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
17. One-Pot Biocatalytic Route from Alkanes to α,ω-Diamines by Whole-Cell Consortia of Engineered Kim YC; Yoo HW; Park BG; Sarak S; Hahn JS; Kim BG; Yun H ACS Synth Biol; 2024 Jul; 13(7):2188-2198. PubMed ID: 38912892 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of Apigenin Glucosides in Engineered Amoah OJ; Thapa SB; Ma SY; Nguyen HT; Zakaria MM; Sohng JK J Microbiol Biotechnol; 2024 May; 34(5):1154-1163. PubMed ID: 38563097 [TBL] [Abstract][Full Text] [Related]
19. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Lu Y; Yang Q; Lin Z; Yang X Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761 [TBL] [Abstract][Full Text] [Related]
20. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]