BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38447910)

  • 1. Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside.
    Marsan CB; Lee SG; Nguyen A; Gordillo Sierra AR; Coleman SM; Brooks SM; Alper HS
    Metab Eng; 2024 May; 83():1-11. PubMed ID: 38447910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport.
    Marinova K; Kleinschmidt K; Weissenböck G; Klein M
    Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
    Lv Y; Marsafari M; Koffas M; Zhou J; Xu P
    ACS Synth Biol; 2019 Nov; 8(11):2514-2523. PubMed ID: 31622552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Flavonoid 7-O-glucosides by Bioconversion Using Escherichia coli Expressing a 7-O-glucosyltransferase from Tobacco (Nicotiana tabacum).
    Dorjjugder N; Taguchi G
    Appl Biochem Biotechnol; 2022 Jul; 194(7):3320-3329. PubMed ID: 35347669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-cell bioconversion of naringenin to high added value hydroxylated compounds using Yarrowia lipolytica 2.2ab in surface and liquid cultures.
    Hernández-Guzmán C; Prado-Barragán A; Gimeno M; Román-Guerrero A; Rutiaga-Quiñones OM; Rocha Guzmán NE; Huerta-Ochoa S
    Bioprocess Biosyst Eng; 2020 Jul; 43(7):1219-1230. PubMed ID: 32144595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of flavonol and flavone 6-C-glucosides by bioconversion in Escherichia coli expressing a C-glucosyltransferase from wasabi (Eutrema japonicum).
    Dorjjugder N; Hatano M; Taguchi G
    Biotechnol Lett; 2021 Sep; 43(9):1913-1919. PubMed ID: 34302563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Four Flavonoid
    Chong Y; Kim BG; Park YJ; Yang Y; Lee SW; Lee Y; Ahn JH
    J Agric Food Chem; 2023 Apr; 71(13):5302-5313. PubMed ID: 36952620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica.
    Yu A; Zhao Y; Li J; Li S; Pang Y; Zhao Y; Zhang C; Xiao D
    Microbiologyopen; 2020 Jul; 9(7):e1051. PubMed ID: 32342649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides.
    Wang H; Yang Y; Lin L; Zhou W; Liu M; Cheng K; Wang W
    Microb Cell Fact; 2016 Aug; 15(1):134. PubMed ID: 27491546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological synthesis of 7-O-methyl Apigenin from naringenin using escherichia coli expressing two genes.
    Jeon YM; Kim BG; Ahn JH
    J Microbiol Biotechnol; 2009 May; 19(5):491-4. PubMed ID: 19494697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica.
    Lv Y; Edwards H; Zhou J; Xu P
    ACS Synth Biol; 2019 Mar; 8(3):568-576. PubMed ID: 30695641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.
    Lee H; Kim BG; Kim M; Ahn JH
    J Microbiol Biotechnol; 2015 Sep; 25(9):1442-8. PubMed ID: 25975614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose.
    Wei W; Zhang P; Shang Y; Zhou Y; Ye BC
    Bioresour Technol; 2020 Oct; 314():123726. PubMed ID: 32622278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
    Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y
    Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering co-culture system for production of apigetrin in Escherichia coli.
    Thuan NH; Chaudhary AK; Van Cuong D; Cuong NX
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):175-185. PubMed ID: 29362971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of
    Wei LJ; Cao X; Liu JJ; Kwak S; Jin YS; Wang W; Hua Q
    Appl Environ Microbiol; 2021 Aug; 87(17):e0048121. PubMed ID: 34132586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of Apigenin Glucosides in Engineered
    Amoah OJ; Thapa SB; Ma SY; Nguyen HT; Zakaria MM; Sohng JK
    J Microbiol Biotechnol; 2024 May; 34(5):1154-1163. PubMed ID: 38563097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.