These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38447910)
61. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. Sun T; Yu Y; Wang K; Ledesma-Amaro R; Ji XJ Bioresour Technol; 2021 Oct; 337():125484. PubMed ID: 34320765 [TBL] [Abstract][Full Text] [Related]
62. Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica. Shang Y; Zhang P; Wei W; Li J; Ye BC Bioresour Technol; 2023 Aug; 381():129129. PubMed ID: 37146696 [TBL] [Abstract][Full Text] [Related]
63. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica. Guo Q; Li YW; Yan F; Li K; Wang YT; Ye C; Shi TQ; Huang H Biotechnol Bioeng; 2022 Oct; 119(10):2819-2830. PubMed ID: 35798689 [TBL] [Abstract][Full Text] [Related]
64. Efficient biosynthesis, analysis, solubility and anti-bacterial activities of succinylglycosylated naringenin. Zhang S; Li DD; Zeng F; Zhu ZH; Song P; Zhao M; Duan JA Nat Prod Res; 2019 Jun; 33(12):1756-1760. PubMed ID: 29446976 [TBL] [Abstract][Full Text] [Related]
65. Efficient Production of Flavonoid Glucuronides in Du NH; Xiong RL; Zhu TT; Liu XY; Zhang JZ; Fu J; Wang HL; Lou HX; Cheng AX J Nat Prod; 2024 Feb; 87(2):228-237. PubMed ID: 38266493 [TBL] [Abstract][Full Text] [Related]
66. Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin. Simkhada D; Kim E; Lee HC; Sohng JK Mol Cells; 2009 Oct; 28(4):397-401. PubMed ID: 19812897 [TBL] [Abstract][Full Text] [Related]
67. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms. Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175 [TBL] [Abstract][Full Text] [Related]
68. Morphological and Metabolic Engineering of Liu M; Zhang J; Ye J; Qi Q; Hou J ACS Synth Biol; 2021 Dec; 10(12):3551-3560. PubMed ID: 34762415 [TBL] [Abstract][Full Text] [Related]
69. Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Zhou S; Hao T; Zhou J J Microbiol Biotechnol; 2020 Oct; 30(10):1574-1582. PubMed ID: 32830192 [TBL] [Abstract][Full Text] [Related]
70. Isopropanol biosynthesis from crude glycerol using fatty acid precursors via engineered oleaginous yeast Yarrowia lipolytica. Shi X; Park HM; Kim M; Lee ME; Jeong WY; Chang J; Cho BH; Han SO Microb Cell Fact; 2022 Aug; 21(1):168. PubMed ID: 35986289 [TBL] [Abstract][Full Text] [Related]
71. The effect of the skeleton structure of flavanone and flavonoid on interaction with transferrin. Zhang XF; Han RM; Sun XR; Li GY; Yang QF; Li Q; Gai W; Zhang M; Chen L; Yang G; Tang YL Bioorg Med Chem Lett; 2013 Dec; 23(24):6677-81. PubMed ID: 24239187 [TBL] [Abstract][Full Text] [Related]
72. Functional characterization of UDP-glycosyltransferases from the liverwort Plagiochasma appendiculatum and their potential for biosynthesizing flavonoid 7-O-glucosides. Zhu TT; Liu H; Wang PY; Ni R; Sun CJ; Yuan JC; Niu M; Lou HX; Cheng AX Plant Sci; 2020 Oct; 299():110577. PubMed ID: 32900434 [TBL] [Abstract][Full Text] [Related]
73. Metabolic engineering of Yarrowia lipolytica for industrial applications. Zhu Q; Jackson EN Curr Opin Biotechnol; 2015 Dec; 36():65-72. PubMed ID: 26319895 [TBL] [Abstract][Full Text] [Related]
74. Transforming sugars into fat - lipid biosynthesis using different sugars in Yarrowia lipolytica. Hapeta P; Rakicka M; Dulermo R; Gamboa-Meléndez H; Cruz-Le Coq AM; Nicaud JM; Lazar Z Yeast; 2017 Jul; 34(7):293-304. PubMed ID: 28303649 [TBL] [Abstract][Full Text] [Related]
75. Production of the antidepressant orcinol glucoside in Yarrowia lipolytica with yields over 6,400-fold higher than plant extraction. Chen B; Liu X; Wang Y; Bai J; Liu X; Xiang G; Liu W; Zhu X; Cheng J; Lu L; Zhang G; Zhang G; Dai Z; Zi S; Yang S; Jiang H PLoS Biol; 2023 Jun; 21(6):e3002131. PubMed ID: 37279234 [TBL] [Abstract][Full Text] [Related]
76. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica. Cui Z; Jiang X; Zheng H; Qi Q; Hou J Biotechnol Bioeng; 2019 Feb; 116(2):354-363. PubMed ID: 30418662 [TBL] [Abstract][Full Text] [Related]
77. Metabolic engineering of Zhang G; Wang H; Zhang Z; Verstrepen KJ; Wang Q; Dai Z Crit Rev Biotechnol; 2022 Jun; 42(4):618-633. PubMed ID: 34325575 [TBL] [Abstract][Full Text] [Related]
78. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related]
79. New roles for Yarrowia lipolytica in molecules synthesis and biocontrol. Sanya DRA; Onésime D Appl Microbiol Biotechnol; 2022 Nov; 106(22):7397-7416. PubMed ID: 36241927 [TBL] [Abstract][Full Text] [Related]
80. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. Ogo Y; Ozawa K; Ishimaru T; Murayama T; Takaiwa F Plant Biotechnol J; 2013 Aug; 11(6):734-46. PubMed ID: 23551455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]