BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38448093)

  • 1. Rapid preparation of the Amadori rearrangement product of glutamic acid - xylose through intermittent microwave heating and its browning formation potential in microwave thermal processing.
    Wang X; Cui H; Zhang X; Yu J; Xia S; Ho CT
    Food Res Int; 2024 Apr; 181():114075. PubMed ID: 38448093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of N-(1-Deoxy-Α-D-Xylulos-1-Yl)-Glutamic Acid via Aqueous Maillard Reaction Coupled with Vacuum Dehydration and Its Flavor Formation Through Thermal Treatment of Baking Process.
    Xu M; Cui H; Sun F; Jia C; Zhang SL; Hussain S; Tahir MU; Zhang X; Hayat K
    J Food Sci; 2019 Aug; 84(8):2171-2180. PubMed ID: 31313307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine-Xylose Amadori Compound Formation Tracing through Maillard Browning Inhibition by 2-Threityl-thiazolidine-4-carboxylic Acid Formation from Deoxyosone and Exogenous Cysteine.
    Wei S; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Sep; 70(38):12164-12171. PubMed ID: 36124743
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Tang W; Cui H; Sun F; Yu X; Hayat K; Hussain S; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Aug; 67(32):8994-9001. PubMed ID: 31347366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of
    Yu J; Cui H; Tang W; Hayat K; Hussain S; Tahir MU; Gao Y; Zhang X; Ho CT
    J Agric Food Chem; 2020 Feb; 68(6):1714-1724. PubMed ID: 31957424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maillard Browning Inhibition by Ellagic Acid via Its Adduct Formation with the Amadori Rearrangement Product.
    Cui H; Wang Z; Ma M; Hayat K; Zhang Q; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Sep; 69(34):9924-9933. PubMed ID: 34427083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Mechanism of (-)-Epigallocatechin Gallate Indicating the Critical Formation Conditions of Amadori Compound during an Aqueous Maillard Reaction.
    Yu X; Cui H; Hayat K; Hussain S; Jia C; Zhang SL; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Mar; 67(12):3412-3422. PubMed ID: 30827106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the C-Ring Structure of Flavonoids on the Yield of Adducts Formed by the Linkage of the Active Site at the A-Ring and Amadori Rearrangement Products during the Maillard Intermediate Preparation.
    Chen P; Cui H; Feng L; Yu J; Hayat K; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2022 Mar; 70(10):3280-3288. PubMed ID: 35245065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated Dissipation of Free and Immobilized Water Facilitating the Intramolecular Dehydration of
    Zhang A; Cui H; Hayat K; Zhang Q; Zhang X; Ho CT
    J Agric Food Chem; 2021 Dec; 69(48):14662-14670. PubMed ID: 34807609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Methionine on the Thermal Degradation of
    Deng S; Cui H; Hayat K; Hussain S; Tahir MU; Zhai Y; Zhang Q; Zhang X; Ho CT
    J Agric Food Chem; 2021 May; 69(17):5167-5177. PubMed ID: 33891395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence and Conversion Mechanism for Selective Preparation of a Xylose-Diglycine Amadori Compound and a Cross-linking Product in an Aqueous Maillard Reaction.
    Ma M; Cui H; Wang Z; Hayat K; Jia C; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Dec; 69(49):14915-14925. PubMed ID: 34856795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2-Threityl-Thiazolidine-4-Carboxylic Acid and Corresponding Browning Accelerated by Trapping Reaction between Extra-Added Xylose and Released Cysteine during Maillard Reaction.
    Zhai Y; Cui H; Zhang Q; Hayat K; Wu X; Deng S; Zhang X; Ho CT
    J Agric Food Chem; 2021 Sep; 69(36):10648-10656. PubMed ID: 34463101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous Threonine-Induced Conversion of Threonine-Xylose Amadori Compound to Heyns Compound for Efficiently Promoting the Formation of Pyrazines.
    Chen P; Cui H; Zhou T; Feng L; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Jul; 71(29):11141-11149. PubMed ID: 37440603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Intermittent Microwave Volumetric Heating on Dehydration, Energy Consumption, Antioxidant Substances, and Sensory Qualities of Litchi Fruit during Vacuum Drying.
    Cao X; Chen J; Islam MN; Xu W; Zhong S
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31775311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Molecular Mechanisms of Transformation between Isomeric Intermediates Formed at Different Stages of Cysteine-Xylose Maillard Reaction Model through Dehydration.
    Zhai Y; Hayat K; Li T; Fu Y; Ho CT
    J Agric Food Chem; 2023 Nov; 71(43):16260-16269. PubMed ID: 37857511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation kinetics of Maillard reaction intermediates from glycine-ribose system and improving Amadori rearrangement product through controlled thermal reaction and vacuum dehydration.
    Zhan H; Tang W; Cui H; Hayat K; Hussain S; Tahir MU; Zhang S; Zhang X; Ho CT
    Food Chem; 2020 May; 311():125877. PubMed ID: 31780222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maillard Mimetic Food-Grade Synthesis of
    Zhang J; Zhao M; Gao N; Su G; Sun B; Zhang J; Ho CT
    J Agric Food Chem; 2020 Jul; 68(30):8008-8015. PubMed ID: 32610897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotion or Inhibition Effects of Exogenous Glutathione-Degraded Amino Acids on the Formation of 2,3-Butanedione and Pyrazines via Varied Pathways of Interaction with α-Dicarbonyl Compounds Derived from
    Zhou T; Xia X; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Oct; 71(39):14312-14321. PubMed ID: 37737140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adducts Derived from (-)-Epigallocatechin Gallate-Amadori Rearrangement Products in Aqueous Reaction Systems: Characterization, Formation, and Thermolysis.
    Yu J; Cui H; Zhang Q; Hayat K; Zhan H; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10902-10911. PubMed ID: 32893622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.