BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 38448140)

  • 21. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses.
    Hamdan MF; Karlson CKS; Teoh EY; Lau SE; Tan BC
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome editing for crop improvement: Challenges and opportunities.
    Abdallah NA; Prakash CS; McHughen AG
    GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9 based molecular breeding in crop plants: a review.
    Ikram M; Rauf A; Rao MJ; Maqsood MFK; Bakhsh MZM; Ullah M; Batool M; Mehran M; Tahira M
    Mol Biol Rep; 2024 Jan; 51(1):227. PubMed ID: 38281301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-omics revolution to promote plant breeding efficiency.
    Mahmood U; Li X; Fan Y; Chang W; Niu Y; Li J; Qu C; Lu K
    Front Plant Sci; 2022; 13():1062952. PubMed ID: 36570904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant Genome Engineering for Targeted Improvement of Crop Traits.
    Sedeek KEM; Mahas A; Mahfouz M
    Front Plant Sci; 2019; 10():114. PubMed ID: 30809237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [
    Numan M; Khan AL; Asaf S; Salehin M; Beyene G; Tadele Z; Ligaba-Osena A
    Plants (Basel); 2021 Mar; 10(4):. PubMed ID: 33806233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives.
    Yan M; Nie H; Wang Y; Wang X; Jarret R; Zhao J; Wang H; Yang J
    Plant Commun; 2022 Sep; 3(5):100332. PubMed ID: 35643086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advancements in molecular marker technologies and their applications in diversity studies.
    Ramesh P; Mallikarjuna G; Sameena S; Kumar A; Gurulakshmi K; Reddy BV; Reddy PCO; Sekhar AC
    J Biosci; 2020; 45():. PubMed ID: 33097680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome Editing for Sustainable Agriculture in Africa.
    Tripathi L; Dhugga KS; Ntui VO; Runo S; Syombua ED; Muiruri S; Wen Z; Tripathi JN
    Front Genome Ed; 2022; 4():876697. PubMed ID: 35647578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement.
    Tariq A; Mushtaq M; Yaqoob H; Bhat BA; Zargar SM; Raza A; Ali S; Charagh S; Mubarik MS; Zaman QU; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-27. PubMed ID: 37288976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding.
    Baloch FS; Altaf MT; Liaqat W; Bedir M; Nadeem MA; Cömertpay G; Çoban N; Habyarimana E; Barutçular C; Cerit I; Ludidi N; Karaköy T; Aasim M; Chung YS; Nawaz MA; Hatipoğlu R; Kökten K; Sun HJ
    Front Genet; 2023; 14():1150616. PubMed ID: 37252661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global Role of Crop Genomics in the Face of Climate Change.
    Pourkheirandish M; Golicz AA; Bhalla PL; Singh MB
    Front Plant Sci; 2020; 11():922. PubMed ID: 32765541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture.
    Rajput M; Choudhary K; Kumar M; Vivekanand V; Chawade A; Ortiz R; Pareek N
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in exploring transcriptional regulatory landscape of crops.
    Huo Q; Song R; Ma Z
    Front Plant Sci; 2024; 15():1421503. PubMed ID: 38903438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.