These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38448412)

  • 1. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors.
    Sibug-Torres SM; Grys DB; Kang G; Niihori M; Wyatt E; Spiesshofer N; Ruane A; de Nijs B; Baumberg JJ
    Nat Commun; 2024 Mar; 15(1):2022. PubMed ID: 38448412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine.
    Park JO; Choi Y; Ahn HM; Lee CK; Chun H; Park YM; Kim KB
    Anal Chim Acta; 2024 Jan; 1285():342036. PubMed ID: 38057052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open-Nanogap-Induced Strong Electromagnetic Enhancement in Au/AgAu Monolayer as a Stable and Uniform SERS Substrate for Ultrasensitive Detection.
    Zhao YX; Liang X; Chen YL; Chen YT; Ma L; Ding SJ; Chen XB; Wang QQ
    Anal Chem; 2024 May; 96(21):8416-8423. PubMed ID: 38755966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform.
    Mun C; Linh VTN; Kwon JD; Jung HS; Kim DH; Park SG
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30995760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Plasmon-Polaritons for Reversible Assembly of Gold Nanoparticles, In Situ Nanogap Tuning, and SERS.
    Ghanashyam C; Sinha RK; Bankapur A
    Small Methods; 2024 Jan; 8(1):e2301086. PubMed ID: 37806766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy.
    Luo S; Mancini A; Wang F; Liu J; Maier SA; de Mello JC
    ACS Nano; 2022 May; 16(5):7438-7447. PubMed ID: 35381178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing.
    Dinish US; Yaw FC; Agarwal A; Olivo M
    Biosens Bioelectron; 2011 Jan; 26(5):1987-92. PubMed ID: 20869866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cucurbit[8]uril-mediated SERS plasmonic nanostructures with sub-nanometer gap for the identification and determination of estrogens.
    Teng Y; Li X; Chen Y; Xu P; Pan Z; Shao K; Sun N
    Mikrochim Acta; 2023 Apr; 190(5):185. PubMed ID: 37071210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting.
    Garg A; Nam W; Zhou W
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56290-56299. PubMed ID: 33283507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing.
    Zhao Q; Yang H; Nie B; Luo Y; Shao J; Li G
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3580-3590. PubMed ID: 34983178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Enhanced Raman Scattering Sensors Employing a Nanoparticle-On-Liquid-Mirror (NPoLM) Architecture.
    Datta S; Vasini S; Miao X; Liu PQ
    Small Methods; 2024 Apr; ():e2400119. PubMed ID: 38639023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Real-Time SERS Detection with Recyclable Ag Nanorods@HfO
    Ma L; Wu H; Huang Y; Zou S; Li J; Zhang Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27162-27168. PubMed ID: 27599165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss.
    Shen Y; Cheng X; Li G; Zhu Q; Chi Z; Wang J; Jin C
    Nanoscale Horiz; 2016 Jul; 1(4):290-297. PubMed ID: 32260648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance.
    Li H; Merkl P; Sommertune J; Thersleff T; Sotiriou GA
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201133. PubMed ID: 35670133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-layer nanogap array for high-performance SERS substrate.
    Seol ML; Kim JH; Kang T; Im H; Kim S; Kim B; Choi YK
    Nanotechnology; 2011 Jun; 22(23):235303. PubMed ID: 21483043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality.
    Zhou J; Xiong Q; Ma J; Ren J; Messersmith PB; Chen P; Duan H
    ACS Nano; 2016 Dec; 10(12):11066-11075. PubMed ID: 28024348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.