BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38448437)

  • 1. Fully bioresorbable hybrid opto-electronic neural implant system for simultaneous electrophysiological recording and optogenetic stimulation.
    Cho M; Han JK; Suh J; Kim JJ; Ryu JR; Min IS; Sang M; Lim S; Kim TS; Kim K; Kang K; Hwang K; Kim K; Hong EB; Nam MH; Kim J; Song YM; Lee GJ; Cho IJ; Yu KJ
    Nat Commun; 2024 Mar; 15(1):2000. PubMed ID: 38448437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications.
    Cha GD; Kang D; Lee J; Kim DH
    Adv Healthc Mater; 2019 Jun; 8(11):e1801660. PubMed ID: 30957984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic entrainment of neural oscillations with hybrid fiber probes.
    Kilias A; Canales A; Froriep UP; Park S; Egert U; Anikeeva P
    J Neural Eng; 2018 Oct; 15(5):056006. PubMed ID: 29923505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A silk-based self-adaptive flexible opto-electro neural probe.
    Zhou Y; Gu C; Liang J; Zhang B; Yang H; Zhou Z; Li M; Sun L; Tao TH; Wei X
    Microsyst Nanoeng; 2022; 8():118. PubMed ID: 36389054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring.
    Yu J; Ling W; Li Y; Ma N; Wu Z; Liang R; Pan H; Liu W; Fu B; Wang K; Li C; Wang H; Peng H; Ning B; Yang J; Huang X
    Small; 2021 Jan; 17(4):e2005925. PubMed ID: 33372299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodeposited NaYF
    Zhang X; Ding J; Zou L; Tian H; Fang Y; Wang J
    J Mater Chem B; 2023 Jun; 11(24):5565-5573. PubMed ID: 36939747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin, Soft, Bioresorbable Organic Electrochemical Transistors for Transient Spatiotemporal Mapping of Brain Activity.
    Wu M; Yao K; Huang N; Li H; Zhou J; Shi R; Li J; Huang X; Li J; Jia H; Gao Z; Wong TH; Li D; Hou S; Liu Y; Zhang S; Song E; Yu J; Yu X
    Adv Sci (Weinh); 2023 May; 10(14):e2300504. PubMed ID: 36825679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.
    Cao Y; Pan S; Yan M; Sun C; Huang J; Zhong C; Wang L; Yi L
    BMC Biol; 2021 Nov; 19(1):252. PubMed ID: 34819062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications.
    Guo B; Fan Y; Wang M; Cheng Y; Ji B; Chen Y; Wang G
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.
    Yu KJ; Kuzum D; Hwang SW; Kim BH; Juul H; Kim NH; Won SM; Chiang K; Trumpis M; Richardson AG; Cheng H; Fang H; Thomson M; Bink H; Talos D; Seo KJ; Lee HN; Kang SK; Kim JH; Lee JY; Huang Y; Jensen FE; Dichter MA; Lucas TH; Viventi J; Litt B; Rogers JA
    Nat Mater; 2016 Jul; 15(7):782-791. PubMed ID: 27088236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes.
    Pas J; Rutz AL; Quilichini PP; Slézia A; Ghestem A; Kaszas A; Donahue MJ; Curto VF; O'Connor RP; Bernard C; Williamson A; Malliaras GG
    J Neural Eng; 2018 Dec; 15(6):065001. PubMed ID: 30132444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices.
    Ryu H; Seo MH; Rogers JA
    Adv Healthc Mater; 2021 Sep; 10(17):e2002236. PubMed ID: 33586341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires.
    Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T
    Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step optogenetics with multifunctional flexible polymer fibers.
    Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P
    Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.