These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38449109)
1. Enhancing Iodine Capture of Porous Organic Cages through N-Heteroatom Engineering. Zou D; Dong X; Tong T; Gao W; He S; Li Z; Yang L; Cao X Langmuir; 2024 Mar; 40(11):5959-5967. PubMed ID: 38449109 [TBL] [Abstract][Full Text] [Related]
2. Post-Synthetic Modification of Porous Organic Cages for Enhanced Iodine Adsorption Performance. Mao Q; Yang S; Zhang J; Liu Y; Liu M Adv Sci (Weinh); 2024 Dec; 11(45):e2408494. PubMed ID: 39401421 [TBL] [Abstract][Full Text] [Related]
3. Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient Iodine Vapor Capture Performance. Liu C; Jin Y; Yu Z; Gong L; Wang H; Yu B; Zhang W; Jiang J J Am Chem Soc; 2022 Jul; 144(27):12390-12399. PubMed ID: 35765245 [TBL] [Abstract][Full Text] [Related]
4. N-Heteroatom Engineered Nonporous Amorphous Self-Assembled Coordination Cages for Capture and Storage of Iodine. Dalapati M; Das A; Maity P; Singha R; Ghosh S; Samanta D Inorg Chem; 2024 Aug; 63(34):15973-15983. PubMed ID: 39140114 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Electron-Rich Porous Organic Polymers via Schiff-Base Chemistry for Efficient Iodine Capture. Tian P; Ai Z; Hu H; Wang M; Li Y; Gao X; Qian J; Su X; Xiao S; Xu H; Lu F; Gao Y Molecules; 2022 Aug; 27(16):. PubMed ID: 36014397 [TBL] [Abstract][Full Text] [Related]
7. From Supramolecular Organic Cages to Porous Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability by Fully Exposed Nitrogen-Rich Sites. Cheng K; Li H; Wang JR; Li PZ; Zhao Y Small; 2023 Aug; 19(34):e2301998. PubMed ID: 37162443 [TBL] [Abstract][Full Text] [Related]
8. SO Martínez-Ahumada E; He D; Berryman V; López-Olvera A; Hernandez M; Jancik V; Martis V; Vera MA; Lima E; Parker DJ; Cooper AI; Ibarra IA; Liu M Angew Chem Int Ed Engl; 2021 Aug; 60(32):17556-17563. PubMed ID: 33979473 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Protonated Two-Dimensional Metal-Organic Framework Nanosheets for Highly Efficient Iodine Capture from Water. Yu CX; Li XJ; Zong JS; You DJ; Liang AP; Zhou YL; Li XQ; Liu LL Inorg Chem; 2022 Sep; 61(35):13883-13892. PubMed ID: 35998569 [TBL] [Abstract][Full Text] [Related]
15. Face-Capped M(4) L4 Tetrahedral Metal-Organic Cage: Iodine Capture and Release, Ion Exchange, and Electrical Conductivity. Xu WQ; Li YH; Wang HP; Jiang JJ; Fenske D; Su CY Chem Asian J; 2016 Jan; 11(2):216-20. PubMed ID: 26541782 [TBL] [Abstract][Full Text] [Related]
16. A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture. Maji S; Natarajan R Small; 2023 Nov; 19(44):e2302902. PubMed ID: 37394720 [TBL] [Abstract][Full Text] [Related]
17. Recent progress in iodine capture by macrocycles and cages. Zhou W; Lavendomme R; Zhang D Chem Commun (Camb); 2024 Jan; 60(7):779-792. PubMed ID: 38126398 [TBL] [Abstract][Full Text] [Related]
18. Expanding carbon capture capacity: uncovering additional CO Li ZJ; Srebnik S Phys Chem Chem Phys; 2021 May; 23(17):10311-10320. PubMed ID: 33951133 [TBL] [Abstract][Full Text] [Related]
19. An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Yan Z; Qiao Y; Wang J; Xie J; Cui B; Fu Y; Lu J; Yang Y; Bu N; Yuan Y; Xia L Molecules; 2022 Sep; 27(19):. PubMed ID: 36234834 [TBL] [Abstract][Full Text] [Related]
20. Porous Organic Cage as an Efficient Platform for Industrial Radioactive Iodine Capture. Liu X; Zhang Z; Shui F; Zhang S; Li L; Wang J; Yi M; You Z; Yang S; Yang R; Wang S; Liu Y; Zhao Q; Li B; Bu XH; Ma S Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202411342. PubMed ID: 39078740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]