These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38449383)

  • 1. Role of Singles Amplitudes in ADC(2) and CC2 for Low-Lying Electronically Excited States.
    Sülzner N; Hättig C
    J Chem Theory Comput; 2024 Mar; 20(6):2462-2474. PubMed ID: 38449383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking Coupled Cluster Methods on Valence Singlet Excited States.
    Kánnár D; Szalay PG
    J Chem Theory Comput; 2014 Sep; 10(9):3757-65. PubMed ID: 26588520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Compounds.
    Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2015 Nov; 11(11):5340-59. PubMed ID: 26574326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Comparisons between Experiment, TD-DFT, CC, and ADC for Transition Energies.
    Suellen C; Freitas RG; Loos PF; Jacquemin D
    J Chem Theory Comput; 2019 Aug; 15(8):4581-4590. PubMed ID: 31265781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled-cluster calculations of the lowest 0-0 bands of the electronic excitation spectrum of naphthalene.
    Fliegl H; Sundholm D
    Phys Chem Chem Phys; 2014 Jun; 16(21):9859-65. PubMed ID: 24406689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3.
    Sauer SP; Schreiber M; Silva-Junior MR; Thiel W
    J Chem Theory Comput; 2009 Mar; 5(3):555-64. PubMed ID: 26610222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking the Approximate Second-Order Coupled-Cluster Method on Biochromophores.
    Send R; Kaila VR; Sundholm D
    J Chem Theory Comput; 2011 Aug; 7(8):2473-84. PubMed ID: 26606621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3.
    Schreiber M; Silva-Junior MR; Sauer SP; Thiel W
    J Chem Phys; 2008 Apr; 128(13):134110. PubMed ID: 18397056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data.
    Winter NO; Graf NK; Leutwyler S; Hättig C
    Phys Chem Chem Phys; 2013 May; 15(18):6623-30. PubMed ID: 23111753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of local coupled cluster methods for excited states of BODIPY/Aza-BODIPY families.
    Feldt M; Brown A
    J Comput Chem; 2021 Jan; 42(3):144-155. PubMed ID: 33103817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: efficient implementation and benchmarking.
    Harbach PH; Wormit M; Dreuw A
    J Chem Phys; 2014 Aug; 141(6):064113. PubMed ID: 25134557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments.
    Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D
    J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate state representation approach to physical properties of electronically excited molecules.
    Schirmer J; Trofimov AB
    J Chem Phys; 2004 Jun; 120(24):11449-64. PubMed ID: 15268179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key!
    Hall D; Sancho-García JC; Pershin A; Ricci G; Beljonne D; Zysman-Colman E; Olivier Y
    J Chem Theory Comput; 2022 Aug; 18(8):4903-4918. PubMed ID: 35786892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Excited State Methods by Adiabatic Excitation Energies.
    Send R; Kühn M; Furche F
    J Chem Theory Comput; 2011 Aug; 7(8):2376-86. PubMed ID: 26606613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states.
    Hellweg A; Grün SA; Hättig C
    Phys Chem Chem Phys; 2008 Jul; 10(28):4119-27. PubMed ID: 18612515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries.
    Loos PF; Jacquemin D
    J Chem Theory Comput; 2019 Apr; 15(4):2481-2491. PubMed ID: 30802404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods.
    Ben Amor N; Hoyau S; Maynau D; Brenner V
    J Chem Phys; 2018 May; 148(18):184105. PubMed ID: 29764139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algebraic-diagrammatic construction scheme for the polarization propagator including ground-state coupled-cluster amplitudes. I. Excitation energies.
    Hodecker M; Dempwolff AL; Rehn DR; Dreuw A
    J Chem Phys; 2019 May; 150(17):174104. PubMed ID: 31067906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2.
    Sülzner N; Hättig C
    J Phys Chem A; 2022 Sep; 126(35):5911-5923. PubMed ID: 36037028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.