These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38450101)

  • 1. Exploring the molecular landscape of NNK-induced transformation: A comprehensive genome-wide CRISPR/Cas9 screening.
    Dinh T; Rahm M; Wang Z; McFarland C; Khalil A
    Genes Dis; 2024 Jul; 11(4):101131. PubMed ID: 38450101
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans.
    Marton T; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32878930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide CRISPR/Cas9 screening for drug resistance in tumors.
    Zhang Z; Wang H; Yan Q; Cui J; Chen Y; Ruan S; Yang J; Wu Z; Han M; Huang S; Zhou Q; Zhang C; Hou B
    Front Pharmacol; 2023; 14():1284610. PubMed ID: 38084101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 Landscape: Current State and Future Perspectives.
    Tyumentseva M; Tyumentsev A; Akimkin V
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypermethylation of the ADIRF promoter regulates its expression level and is involved in NNK-induced malignant transformation of lung bronchial epithelial cells.
    Xiong R; Du Y; Chen S; Liu T; Ding X; Zhou J; Wang Z; Yang Q
    Arch Toxicol; 2023 Dec; 97(12):3243-3258. PubMed ID: 37777989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 genome editing through
    Zlobin NE; Lebedeva MV; Taranov VV
    Crit Rev Biotechnol; 2020 Mar; 40(2):153-168. PubMed ID: 31903793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements.
    Liu SY; Yi GQ; Tang ZL; Chen B
    Yi Chuan; 2020 May; 42(5):435-443. PubMed ID: 32431295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgene-free genome editing in marine algae by bacterial conjugation - comparison with biolistic CRISPR/Cas9 transformation.
    Sharma AK; Nymark M; Sparstad T; Bones AM; Winge P
    Sci Rep; 2018 Sep; 8(1):14401. PubMed ID: 30258061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical Considerations for Using Pooled Lentiviral CRISPR Libraries.
    McDade JR; Waxmonsky NC; Swanson LE; Fan M
    Curr Protoc Mol Biol; 2016 Jul; 115():31.5.1-31.5.13. PubMed ID: 27366891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLASH Genome Editing Pipeline: An Efficient and High-Throughput Method to Construct Arrayed CRISPR Library for Plant Functional Genomics.
    Yao L; Wang X; Ke R; Chen K; Xie K
    Curr Protoc; 2023 Sep; 3(9):e905. PubMed ID: 37755326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape.
    Kharbikar L; Konwarh R; Chakraborty M; Nandanwar S; Marathe A; Yele Y; Ghosh PK; Sanan-Mishra N; Singh AP
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1825-1850. PubMed ID: 38222286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis.
    Liu Y; Wang Y; Xu S; Tang X; Zhao J; Yu C; He G; Xu H; Wang S; Tang Y; Fu C; Ma Y; Zhou G
    Plant Biotechnol J; 2019 Nov; 17(11):2143-2152. PubMed ID: 30972865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt and osmotic stress can improve the editing efficiency of CRISPR/Cas9-mediated genome editing system in potato.
    Ye M; Yao M; Li C; Gong M
    PeerJ; 2023; 11():e15771. PubMed ID: 37547711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy.
    Liu Z; Shi M; Ren Y; Xu H; Weng S; Ning W; Ge X; Liu L; Guo C; Duo M; Li L; Li J; Han X
    Mol Cancer; 2023 Feb; 22(1):35. PubMed ID: 36797756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding the off-target effects of CRISPR/cas9 system is still a challenging accomplishment for genetic transformation.
    Herai RH
    Gene; 2019 Jun; 700():176-178. PubMed ID: 30898720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment.
    Xue VW; Wong SCC; Cho WCS
    Expert Opin Ther Targets; 2020 Nov; 24(11):1147-1158. PubMed ID: 32893711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.