These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38450632)
1. Whole-Genome Mapping of Epigenetic Modification of 5-Formylcytosine at Single-Base Resolution by Chemical Labeling Enrichment and Deamination Sequencing. Ding JH; Li G; Xiong J; Liu FL; Xie NB; Ji TT; Wang M; Guo X; Feng YQ; Ci W; Yuan BF Anal Chem; 2024 Mar; 96(11):4726-4735. PubMed ID: 38450632 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Song CX; Szulwach KE; Dai Q; Fu Y; Mao SQ; Lin L; Street C; Li Y; Poidevin M; Wu H; Gao J; Liu P; Li L; Xu GL; Jin P; He C Cell; 2013 Apr; 153(3):678-91. PubMed ID: 23602153 [TBL] [Abstract][Full Text] [Related]
3. Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Wu H; Wu X; Zhang Y Nat Protoc; 2016 Jun; 11(6):1081-100. PubMed ID: 27172168 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Raiber EA; Beraldi D; Ficz G; Burgess HE; Branco MR; Murat P; Oxley D; Booth MJ; Reik W; Balasubramanian S Genome Biol; 2012 Aug; 13(8):R69. PubMed ID: 22902005 [TBL] [Abstract][Full Text] [Related]
5. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793 [TBL] [Abstract][Full Text] [Related]
6. Bisulfite-Free and Single-Base Resolution Detection of Epigenetic DNA Modification of 5-Methylcytosine by Methyltransferase-Directed Labeling with APOBEC3A Deamination Sequencing. Xiong J; Chen KK; Xie NB; Ji TT; Yu SY; Tang F; Xie C; Feng YQ; Yuan BF Anal Chem; 2022 Nov; 94(44):15489-15498. PubMed ID: 36280344 [TBL] [Abstract][Full Text] [Related]
7. Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Wu H; Wu X; Shen L; Zhang Y Nat Biotechnol; 2014 Dec; 32(12):1231-40. PubMed ID: 25362244 [TBL] [Abstract][Full Text] [Related]
8. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109 [TBL] [Abstract][Full Text] [Related]
9. Charting oxidized methylcytosines at base resolution. Wu H; Zhang Y Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
11. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Xia B; Han D; Lu X; Sun Z; Zhou A; Yin Q; Zeng H; Liu M; Jiang X; Xie W; He C; Yi C Nat Methods; 2015 Nov; 12(11):1047-50. PubMed ID: 26344045 [TBL] [Abstract][Full Text] [Related]
12. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Ito S; Shen L; Dai Q; Wu SC; Collins LB; Swenberg JA; He C; Zhang Y Science; 2011 Sep; 333(6047):1300-3. PubMed ID: 21778364 [TBL] [Abstract][Full Text] [Related]
13. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Neri F; Incarnato D; Krepelova A; Parlato C; Oliviero S Nat Protoc; 2016 Jul; 11(7):1191-205. PubMed ID: 27281647 [TBL] [Abstract][Full Text] [Related]
14. Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation. Abakir A; Alenezi F; Ruzov A Methods Mol Biol; 2021; 2198():311-319. PubMed ID: 32822041 [TBL] [Abstract][Full Text] [Related]
15. [Oxidation and deamination of nucleobases as an epigenetic tool]. Guz J; Jurgowiak M; Oliński R Postepy Hig Med Dosw (Online); 2012 May; 66():275-86. PubMed ID: 22706113 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. Lu X; Song CX; Szulwach K; Wang Z; Weidenbacher P; Jin P; He C J Am Chem Soc; 2013 Jun; 135(25):9315-7. PubMed ID: 23758547 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into substrate preference for TET-mediated oxidation. Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525 [TBL] [Abstract][Full Text] [Related]
19. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. Neri F; Incarnato D; Krepelova A; Rapelli S; Anselmi F; Parlato C; Medana C; Dal Bello F; Oliviero S Cell Rep; 2015 Feb; 10(5):674-683. PubMed ID: 25660018 [TBL] [Abstract][Full Text] [Related]
20. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Onodera A; González-Avalos E; Lio CJ; Georges RO; Bellacosa A; Nakayama T; Rao A Genome Biol; 2021 Jun; 22(1):186. PubMed ID: 34158086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]