These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38450632)
21. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Inoue A; Shen L; Dai Q; He C; Zhang Y Cell Res; 2011 Dec; 21(12):1670-6. PubMed ID: 22124233 [TBL] [Abstract][Full Text] [Related]
22. High-Resolution Analysis of 5-Hydroxymethylcytosine by TET-Assisted Bisulfite Sequencing. Huang Z; Meng Y; Szabó PE; Kohli RM; Pfeifer GP Methods Mol Biol; 2021; 2198():321-331. PubMed ID: 32822042 [TBL] [Abstract][Full Text] [Related]
23. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Iurlaro M; Ficz G; Oxley D; Raiber EA; Bachman M; Booth MJ; Andrews S; Balasubramanian S; Reik W Genome Biol; 2013; 14(10):R119. PubMed ID: 24156278 [TBL] [Abstract][Full Text] [Related]
24. Whole-Genome Sequencing of 5-Hydroxymethylcytosine at Base Resolution by Bisulfite-Free Single-Step Deamination with Engineered Cytosine Deaminase. Xie NB; Wang M; Chen W; Ji TT; Guo X; Gang FY; Wang YF; Feng YQ; Liang Y; Ci W; Yuan BF ACS Cent Sci; 2023 Dec; 9(12):2315-2325. PubMed ID: 38161361 [TBL] [Abstract][Full Text] [Related]
25. Engineered APOBEC3C Sequencing Enables Bisulfite-Free and Direct Detection of DNA Methylation at a Single-Base Resolution. Wang M; Xie NB; Chen KK; Ji TT; Xiong J; Guo X; Yu SY; Tang F; Xie C; Feng YQ; Yuan BF Anal Chem; 2023 Jan; 95(2):1556-1565. PubMed ID: 36563112 [TBL] [Abstract][Full Text] [Related]
26. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Szulik MW; Pallan PS; Nocek B; Voehler M; Banerjee S; Brooks S; Joachimiak A; Egli M; Eichman BF; Stone MP Biochemistry; 2015 Feb; 54(5):1294-305. PubMed ID: 25632825 [TBL] [Abstract][Full Text] [Related]
28. Bisulfite-free and single-nucleotide resolution sequencing of DNA epigenetic modification of 5-hydroxymethylcytosine using engineered deaminase. Xie NB; Wang M; Ji TT; Guo X; Ding JH; Yuan BF; Feng YQ Chem Sci; 2022 Jun; 13(23):7046-7056. PubMed ID: 35774177 [TBL] [Abstract][Full Text] [Related]
29. Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution. Zhu C; Gao Y; Guo H; Xia B; Song J; Wu X; Zeng H; Kee K; Tang F; Yi C Cell Stem Cell; 2017 May; 20(5):720-731.e5. PubMed ID: 28343982 [TBL] [Abstract][Full Text] [Related]
30. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Booth MJ; Marsico G; Bachman M; Beraldi D; Balasubramanian S Nat Chem; 2014 May; 6(5):435-40. PubMed ID: 24755596 [TBL] [Abstract][Full Text] [Related]
31. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification. Dietzsch J; Feineis D; Höbartner C FEBS Lett; 2018 Jun; 592(12):2032-2047. PubMed ID: 29683490 [TBL] [Abstract][Full Text] [Related]
32. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. van der Wijst MG; Venkiteswaran M; Chen H; Xu GL; Plösch T; Rots MG Epigenetics; 2015; 10(8):671-6. PubMed ID: 26098813 [TBL] [Abstract][Full Text] [Related]
33. Nucleic acid modifications with epigenetic significance. Fu Y; He C Curr Opin Chem Biol; 2012 Dec; 16(5-6):516-24. PubMed ID: 23092881 [TBL] [Abstract][Full Text] [Related]
34. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Booth MJ; Ost TW; Beraldi D; Bell NM; Branco MR; Reik W; Balasubramanian S Nat Protoc; 2013 Oct; 8(10):1841-51. PubMed ID: 24008380 [TBL] [Abstract][Full Text] [Related]
35. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Wheldon LM; Abakir A; Ferjentsik Z; Dudnakova T; Strohbuecker S; Christie D; Dai N; Guan S; Foster JM; Corrêa IR; Loose M; Dixon JE; Sottile V; Johnson AD; Ruzov A Cell Rep; 2014 Jun; 7(5):1353-1361. PubMed ID: 24882006 [TBL] [Abstract][Full Text] [Related]
36. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Iurlaro M; McInroy GR; Burgess HE; Dean W; Raiber EA; Bachman M; Beraldi D; Balasubramanian S; Reik W Genome Biol; 2016 Jun; 17(1):141. PubMed ID: 27356509 [TBL] [Abstract][Full Text] [Related]
37. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894 [TBL] [Abstract][Full Text] [Related]
38. Structure and Function of TET Enzymes. Yin X; Hu L; Xu Y Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513 [TBL] [Abstract][Full Text] [Related]
39. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Sun Z; Dai N; Borgaro JG; Quimby A; Sun D; Corrêa IR; Zheng Y; Zhu Z; Guan S Mol Cell; 2015 Feb; 57(4):750-761. PubMed ID: 25639471 [TBL] [Abstract][Full Text] [Related]
40. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]