These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38450640)

  • 21. Investigation on the interaction of food colorant Sudan III with bovine serum albumin using spectroscopic and molecular docking methods.
    Bai J; Ma X; Sun X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(6):669-676. PubMed ID: 32073347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biophysical and molecular docking approaches for the investigation of biomolecular interactions between amphotericin B and bovine serum albumin.
    Raza M; Ahmad A; Yue F; Khan Z; Jiang Y; Wei Y; Raza S; He WW; Khan FU; Qipeng Y
    J Photochem Photobiol B; 2017 May; 170():6-15. PubMed ID: 28364684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu
    Yousuf I; Bashir M; Arjmand F; Tabassum S
    J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pillar[6]arene-based photoresponsive host-guest complexation.
    Yu G; Han C; Zhang Z; Chen J; Yan X; Zheng B; Liu S; Huang F
    J Am Chem Soc; 2012 May; 134(20):8711-7. PubMed ID: 22540829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.
    Jahanban-Esfahlan A; Panahi-Azar V
    Food Chem; 2016 Jul; 202():426-31. PubMed ID: 26920314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of new indole derivatives of bovine serum albumin using spectroscopic and molecular docking techniques.
    Dezhampanah H; Esmaili M; Akbarnia Dafrazi A; Mehdizadeh P
    Biotech Histochem; 2019 Apr; 94(3):167-179. PubMed ID: 30556436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly selective binding of methyl orange dye by cationic water-soluble pillar[5]arenes.
    Yakimova LS; Shurpik DN; Gilmanova LH; Makhmutova AR; Rakhimbekova A; Stoikov II
    Org Biomol Chem; 2016 May; 14(18):4233-8. PubMed ID: 27074630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the binding interactions between 17α-ethinylestradiol with bovine serum albumin by multispectroscopy.
    Gu J; Liu L; Zheng S; Yang G; He Q; Huang X; Guo C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(9):1131-1140. PubMed ID: 32515655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.
    Manouchehri F; Izadmanesh Y; Aghaee E; Ghasemi JB
    Bioorg Chem; 2016 Oct; 68():124-36. PubMed ID: 27497200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA.
    Yakimova LS; Nugmanova AR; Mostovaya OA; Vavilova AA; Shurpik DN; Mukhametzyanov TA; Stoikov II
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoreversible switching of the lower critical solution temperature in a photoresponsive host-guest system of pillar[6]arene with triethylene oxide substituents and an azobenzene derivative.
    Ogoshi T; Kida K; Yamagishi TA
    J Am Chem Soc; 2012 Dec; 134(49):20146-50. PubMed ID: 23163776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods.
    Xu H; Yao N; Xu H; Wang T; Li G; Li Z
    Int J Mol Sci; 2013 Jul; 14(7):14185-203. PubMed ID: 23839090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic investigation on the interaction of direct yellow-27 with protein (BSA).
    Bisht B; Dey P; Singh AK; Pant S; Mehata MS
    Methods Appl Fluoresc; 2022 Aug; 10(4):. PubMed ID: 35977534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid Lipid Nanoparticles Based on Monosubstituted Pillar[5]arenes: Chemoselective Synthesis of Macrocycles and Their Supramolecular Self-Assembly.
    Filimonova D; Nazarova A; Yakimova L; Stoikov I
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin.
    Pasricha S; Sharma D; Ojha H; Gahlot P; Pathak M; Basu M; Chawla R; Singhal S; Singh A; Goel R; Kukreti S; Shukla S
    Luminescence; 2017 Nov; 32(7):1252-1262. PubMed ID: 28512990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular spectroscopic and docking analysis of the interaction of fluorescent thiadicarbocyanine dye with biomolecule bovine serum albumin.
    Katrahalli U; Shanker G; Pal D; Hadagali MD
    J Biomol Struct Dyn; 2023 Dec; 41(20):10702-10712. PubMed ID: 36546697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-Linked Pillar[6]arene Nanosponges Fabricated by the Use of a Supra-Amphiphilic Template: Cargo Encapsulation and Overcoming Multidrug Resistance.
    Liu Y; Liao Y; Li P; Li ZT; Ma D
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7974-7983. PubMed ID: 31985197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational investigation of inhibitory mechanism of flavonoids as bovine serum albumin anti-glycation agents.
    Johari A; Moosavi-Movahedi AA; Amanlou M
    Daru; 2014 Dec; 22(1):79. PubMed ID: 25498599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA).
    Shen GF; Liu TT; Wang Q; Jiang M; Shi JH
    J Photochem Photobiol B; 2015 Dec; 153():380-90. PubMed ID: 26555641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved method for removal of azo dye orange II from textile effluent using albumin as sorbent.
    Ohashi T; Jara AM; Batista AC; Franco LO; Barbosa Lima MA; Benachour M; Alves da Silva CA; Campos-Takaki GM
    Molecules; 2012 Nov; 17(12):14219-29. PubMed ID: 23201641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.