These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38451212)

  • 41. Crystal structure of Dictyoglomus thermophilum β-d-xylosidase DtXyl unravels the structural determinants for efficient notoginsenoside R1 hydrolysis.
    Bretagne D; Pâris A; de Vaumas R; Lafite P; Daniellou R
    Biochimie; 2021 Feb; 181():34-41. PubMed ID: 33242495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain.
    Fujimoto Z; Kuno A; Kaneko S; Yoshida S; Kobayashi H; Kusakabe I; Mizuno H
    J Mol Biol; 2000 Jul; 300(3):575-85. PubMed ID: 10884353
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase.
    Yang JK; Yoon HJ; Ahn HJ; Lee BI; Pedelacq JD; Liong EC; Berendzen J; Laivenieks M; Vieille C; Zeikus GJ; Vocadlo DJ; Withers SG; Suh SW
    J Mol Biol; 2004 Jan; 335(1):155-65. PubMed ID: 14659747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-D-xylosides and unsubstituted xylans.
    Tuohy MG; Puls J; Claeyssens M; Vrsanská M; Coughlan MP
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):515-23. PubMed ID: 8452541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and some properties of a xylanase from Aspergillus sydowii MG49.
    Ghosh M; Nanda G
    Appl Environ Microbiol; 1994 Dec; 60(12):4620-3. PubMed ID: 7811101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of Selenomonas ruminantium β-xylosidase thermal stability by replacing buried free cysteines via site directed mutagenesis.
    Dehnavi E; Moeini S; Akbarzadeh A; Dabirmanesh B; Siadat SOR; Khajeh K
    Int J Biol Macromol; 2019 Sep; 136():352-358. PubMed ID: 31220489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production and Characteristics of a Novel Xylose- and Alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for Promoting Hemicellulose Degradation.
    Ye Y; Li X; Zhao J
    Sci Rep; 2017 Sep; 7(1):11600. PubMed ID: 28912429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain.
    Nanmori T; Watanabe T; Shinke R; Kohno A; Kawamura Y
    J Bacteriol; 1990 Dec; 172(12):6669-72. PubMed ID: 2123854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular and biotechnological aspects of xylanases.
    Kulkarni N; Shendye A; Rao M
    FEMS Microbiol Rev; 1999 Jul; 23(4):411-56. PubMed ID: 10422261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of extracellular xylanases by Penicillium janthinellum. Effect of selected growth conditions.
    Curotto E; Concha M; Campos V; Milagres AM; Duran N
    Appl Biochem Biotechnol; 1994 Aug; 48(2):107-16. PubMed ID: 7944349
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose.
    Zhang C; Gao W; Song Z; Dong M; Lin H; Zhu G; Lian M; Xiao Y; Lu F; Wang F; Liu Y
    J Agric Food Chem; 2024 Feb; 72(5):2678-2688. PubMed ID: 38273455
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant β-xylosidase from Aspergillus awamori X-100 and Grindamyl H121 β-xylanase.
    Volokitina MV; Bobrov KS; Piens K; Eneyskaya EV; Tennikova TB; Vlakh EG; Kulminskaya AA
    Biotechnol J; 2015 Jan; 10(1):210-21. PubMed ID: 25367775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 by module shuffling with the Cex of Cellulomonas fimi and by site-directed mutagenesis.
    Kaneko S; Kuno A; Fujimoto Z; Shimizu D; Machida S; Sato Y; Yura K; Go M; Mizuno H; Taira K; Kusakabe I; Hayashi K
    FEBS Lett; 1999 Oct; 460(1):61-6. PubMed ID: 10571062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a novel salt-, xylose- and alkali-tolerant GH43 bifunctional β-xylosidase/α-l-arabinofuranosidase from the gut bacterial genome.
    Xu B; Dai L; Zhang W; Yang Y; Wu Q; Li J; Tang X; Zhou J; Ding J; Han N; Huang Z
    J Biosci Bioeng; 2019 Oct; 128(4):429-437. PubMed ID: 31109875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production.
    Boyce A; Walsh G
    Appl Biochem Biotechnol; 2018 Nov; 186(3):712-730. PubMed ID: 29728961
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Properties and applications of microbial beta-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium.
    Jordan DB; Wagschal K
    Appl Microbiol Biotechnol; 2010 May; 86(6):1647-58. PubMed ID: 20352422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of the catalytic residues in family 52 glycoside hydrolase, a beta-xylosidase from Geobacillus stearothermophilus T-6.
    Bravman T; Belakhov V; Solomon D; Shoham G; Henrissat B; Baasov T; Shoham Y
    J Biol Chem; 2003 Jul; 278(29):26742-9. PubMed ID: 12738774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site‑directed mutagenesis of Tyr509.
    Huang Z; Liu X; Zhang S; Liu Z
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):65-74. PubMed ID: 24122394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A.
    Andrews SR; Charnock SJ; Lakey JH; Davies GJ; Claeyssens M; Nerinckx W; Underwood M; Sinnott ML; Warren RA; Gilbert HJ
    J Biol Chem; 2000 Jul; 275(30):23027-33. PubMed ID: 10767281
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH.
    Fushinobu S; Ito K; Konno M; Wakagi T; Matsuzawa H
    Protein Eng; 1998 Dec; 11(12):1121-8. PubMed ID: 9930661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.