BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38451475)

  • 1. Multi-omic dataset of patient-derived tumor organoids of neuroendocrine neoplasms.
    Alcala N; Voegele C; Mangiante L; Sexton-Oates A; Clevers H; Fernandez-Cuesta L; Dayton TL; Foll M
    Gigascience; 2024 Jan; 13():. PubMed ID: 38451475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites.
    Dayton TL; Alcala N; Moonen L; den Hartigh L; Geurts V; Mangiante L; Lap L; Dost AFM; Beumer J; Levy S; van Leeuwaarde RS; Hackeng WM; Samsom K; Voegele C; Sexton-Oates A; Begthel H; Korving J; Hillen L; Brosens LAA; Lantuejoul S; Jaksani S; Kok NFM; Hartemink KJ; Klomp HM; Borel Rinkes IHM; Dingemans AM; Valk GD; Vriens MR; Buikhuisen W; van den Berg J; Tesselaar M; Derks J; Speel EJ; Foll M; Fernández-Cuesta L; Clevers H
    Cancer Cell; 2023 Dec; 41(12):2083-2099.e9. PubMed ID: 38086335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy.
    Mei J; Liu X; Tian HX; Chen Y; Cao Y; Zeng J; Liu YC; Chen Y; Gao Y; Yin JY; Wang PY
    Clin Transl Med; 2024 Apr; 14(4):e1656. PubMed ID: 38664597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of Patient-Derived Pancreatic Cancer Organoids from Endoscopic Ultrasound-Guided Fine-Needle Aspiration Biopsies.
    Lee JH; Kim H; Lee SH; Ku JL; Chun JW; Seo HY; Kim SC; Paik WH; Ryu JK; Lee SK; Lowy AM; Kim YT
    Gut Liver; 2022 Jul; 16(4):625-636. PubMed ID: 34916338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-Derived Organoid Models of Human Neuroendocrine Carcinoma.
    Dijkstra KK; van den Berg JG; Weeber F; van de Haar J; Velds A; Kaing S; Peters DDGC; Eskens FALM; de Groot DA; Tesselaar MET; Voest EE
    Front Endocrinol (Lausanne); 2021; 12():627819. PubMed ID: 33776923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular map of lung neuroendocrine neoplasms.
    Gabriel AAG; Mathian E; Mangiante L; Voegele C; Cahais V; Ghantous A; McKay JD; Alcala N; Fernandez-Cuesta L; Foll M
    Gigascience; 2020 Oct; 9(11):. PubMed ID: 33124659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in basic and translational research in neuroendocrine neoplasms].
    Ji SR; Xu XW; Yu XJ
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Oct; 24(10):867-874. PubMed ID: 34674461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic characterization of a well-differentiated grade 3 pancreatic neuroendocrine tumor.
    Williamson LM; Steel M; Grewal JK; Thibodeau ML; Zhao EY; Loree JM; Yang KC; Gorski SM; Mungall AJ; Mungall KL; Moore RA; Marra MA; Laskin J; Renouf DJ; Schaeffer DF; Jones SJM
    Cold Spring Harb Mol Case Stud; 2019 Jun; 5(3):. PubMed ID: 31160355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative single-cell RNA sequencing (scRNA-seq) reveals liver metastasis-specific targets in a patient with small intestinal neuroendocrine cancer.
    Rao M; Oh K; Moffitt R; Thompson P; Li J; Liu J; Sasson A; Georgakis G; Kim J; Choi M; Powers S
    Cold Spring Harb Mol Case Stud; 2020 Apr; 6(2):. PubMed ID: 32054662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiomic sequencing of paired primary and metastatic small bowel carcinoids.
    Postel MD; Darabi S; Howe JR; Liang WS; Craig DW; Demeure MJ
    F1000Res; 2023; 12():417. PubMed ID: 37954063
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of multiomics sequencing and advances in the molecular mechanisms of pancreatic neuroendocrine neoplasms.
    Jiang R; Hong X; Zhao Y; Wu W
    Cancer Lett; 2021 Feb; 499():39-48. PubMed ID: 33246093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors.
    Wang R; Li J; Zhou X; Mao Y; Wang W; Gao S; Wang W; Gao Y; Chen K; Yu S; Wu X; Wen L; Ge H; Fu W; Tang F
    Genome Med; 2022 Aug; 14(1):93. PubMed ID: 35974387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms.
    Huang B; Trujillo MA; Fujikura K; Qiu M; Chen F; Felsenstein M; Zhou C; Skaro M; Gauthier C; Macgregor-Das A; Hutchings D; Hong SM; Hruban RH; Eshleman JR; Thompson ED; Klein AP; Goggins M; Wood LD; Roberts NJ
    J Pathol; 2020 Nov; 252(3):252-262. PubMed ID: 32696980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas.
    Tang LH; Basturk O; Sue JJ; Klimstra DS
    Am J Surg Pathol; 2016 Sep; 40(9):1192-202. PubMed ID: 27259015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites.
    Uccella S; La Rosa S; Metovic J; Marchiori D; Scoazec JY; Volante M; Mete O; Papotti M
    Endocr Pathol; 2021 Mar; 32(1):192-210. PubMed ID: 33433884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Genomic and Clinicopathologic Approach Distinguishes Pancreatic Grade 3 Neuroendocrine Tumor From Neuroendocrine Carcinoma and Identifies a Subset With Molecular Overlap.
    Umetsu SE; Kakar S; Basturk O; Kim GE; Chatterjee D; Wen KW; Hale G; Shafizadeh N; Cho SJ; Whitman J; Gill RM; Jones KD; Navale P; Bergsland E; Klimstra D; Joseph NM
    Mod Pathol; 2023 Mar; 36(3):100065. PubMed ID: 36788102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-Derived Tumor Organoids for Drug Repositioning in Cancer Care: A Promising Approach in the Era of Tailored Treatment.
    Vivarelli S; Candido S; Caruso G; Falzone L; Libra M
    Cancers (Basel); 2020 Dec; 12(12):. PubMed ID: 33291603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploratory genomic analysis of high-grade neuroendocrine neoplasms across diverse primary sites.
    Sun TY; Zhao L; Van Hummelen P; Martin B; Hornbacker K; Lee H; Xia LC; Padda SK; Ji HP; Kunz P
    Endocr Relat Cancer; 2022 Dec; 29(12):665-679. PubMed ID: 36165930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient derived organoids to model rare prostate cancer phenotypes.
    Puca L; Bareja R; Prandi D; Shaw R; Benelli M; Karthaus WR; Hess J; Sigouros M; Donoghue A; Kossai M; Gao D; Cyrta J; Sailer V; Vosoughi A; Pauli C; Churakova Y; Cheung C; Deonarine LD; McNary TJ; Rosati R; Tagawa ST; Nanus DM; Mosquera JM; Sawyers CL; Chen Y; Inghirami G; Rao RA; Grandori C; Elemento O; Sboner A; Demichelis F; Rubin MA; Beltran H
    Nat Commun; 2018 Jun; 9(1):2404. PubMed ID: 29921838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Cell and Organoid-Level Analysis of Patient-Derived 3D Organoids to Evaluate Tumor Cell Growth Dynamics and Drug Response.
    Kim S; Choung S; Sun RX; Ung N; Hashemi N; Fong EJ; Lau R; Spiller E; Gasho J; Foo J; Mumenthaler SM
    SLAS Discov; 2020 Aug; 25(7):744-754. PubMed ID: 32349587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.