BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38451755)

  • 41. Cross-Modal Learning for Domain Adaptation in 3D Semantic Segmentation.
    Jaritz M; Vu TH; de Charette R; Wirbel E; Perez P
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):1533-1544. PubMed ID: 35298372
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Salvage of Supervision in Weakly Supervised Object Detection and Segmentation.
    Sui L; Zhang CL; Wu J
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):10394-10408. PubMed ID: 37022838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PatchNet: Maximize the Exploration of Congeneric Semantics for Weakly Supervised Semantic Segmentation.
    Zhang K; Chen C; Yuan C; Chen S; Wang X; He X
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37314912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Weakly Supervised Semantic Segmentation Model of Maize Seedlings and Weed Images Based on Scrawl Labels.
    Zhao L; Zhao Y; Liu T; Deng H
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Weakly Supervised 3D Semantic Segmentation Using Cross-Image Consensus and Inter-Voxel Affinity Relations.
    Zhu X; Chen J; Zeng X; Liang J; Li C; Liu S; Behpour S; Xu M
    Proc IEEE Int Conf Comput Vis; 2021 Oct; 2021():2814-2824. PubMed ID: 35350748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Point Cloud Instance Segmentation With Semi-Supervised Bounding-Box Mining.
    Liao Y; Zhu H; Zhang Y; Ye C; Chen T; Fan J
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):10159-10170. PubMed ID: 34847018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iterative Label Denoising Network: Segmenting Male Pelvic Organs in CT From 3D Bounding Box Annotations.
    Wang S; Wang Q; Shao Y; Qu L; Lian C; Lian J; Shen D
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2710-2720. PubMed ID: 31995472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MTCSNet: One-stage learning and two-point labeling are sufficient for cell segmentation.
    Zhang B; Meng Z; Li H; Zhao Z; Su F
    IEEE Trans Med Imaging; 2024 May; PP():. PubMed ID: 38781067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Auxiliary Tasks Enhanced Dual-Affinity Learning for Weakly Supervised Semantic Segmentation.
    Xu L; Bennamoun M; Boussaid F; Ouyang W; Sohel F; Xu D
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38478447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images.
    Liu Y; He Q; Duan H; Shi H; Han A; He Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Supervised 3D Scene Flow Estimation and Motion Prediction using Local Rigidity Prior.
    Li R; Zhang C; Wang Z; Shen C; Lin G
    IEEE Trans Pattern Anal Mach Intell; 2024 May; PP():. PubMed ID: 38743546
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D Layout Estimation via Weakly Supervised Learning of Plane Parameters From 2D Segmentation.
    Zhang W; Zhang Y; Song R; Liu Y; Zhang W
    IEEE Trans Image Process; 2022; 31():868-879. PubMed ID: 34910632
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
    Sebai M; Wang X; Wang T
    Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Weakly supervised histopathology image segmentation with self-attention.
    Li K; Qian Z; Han Y; Chang EI; Wei B; Lai M; Liao J; Fan Y; Xu Y
    Med Image Anal; 2023 May; 86():102791. PubMed ID: 36933385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Weakly supervised joint whole-slide segmentation and classification in prostate cancer.
    Pati P; Jaume G; Ayadi Z; Thandiackal K; Bozorgtabar B; Gabrani M; Goksel O
    Med Image Anal; 2023 Oct; 89():102915. PubMed ID: 37633177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning.
    Shinohara T; Xiu H; Matsuoka M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Segmentation with mixed supervision: Confidence maximization helps knowledge distillation.
    Liu B; Desrosiers C; Ben Ayed I; Dolz J
    Med Image Anal; 2023 Jan; 83():102670. PubMed ID: 36413905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
    Wang G; Luo X; Gu R; Yang S; Qu Y; Zhai S; Zhao Q; Li K; Zhang S
    Comput Methods Programs Biomed; 2023 Apr; 231():107398. PubMed ID: 36773591
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Weakly-supervised learning for catheter segmentation in 3D frustum ultrasound.
    Yang H; Shan C; Kolen AF; With PHN
    Comput Med Imaging Graph; 2022 Mar; 96():102037. PubMed ID: 35121377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.