BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38451813)

  • 1. Cofilactin rod formation mediates inflammation-induced neurite degeneration.
    Uruk G; Mocanu E; Shaw AE; Bamburg JR; Swanson RA
    Cell Rep; 2024 Mar; 43(3):113914. PubMed ID: 38451813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function.
    Minamide LS; Striegl AM; Boyle JA; Meberg PJ; Bamburg JR
    Nat Cell Biol; 2000 Sep; 2(9):628-36. PubMed ID: 10980704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetic and excitotoxic determinants of cofilactin rod formation.
    Mai N; Wu L; Uruk G; Mocanu E; Swanson RA
    J Neurochem; 2024 May; 168(5):899-909. PubMed ID: 38299375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin type B receptor promotes cofilin rod formation and dendritic loss in neurons by inducing oxidative stress and cofilin activation.
    Tam SW; Feng R; Lau WK; Law AC; Yeung PK; Chung SK
    J Biol Chem; 2019 Aug; 294(33):12495-12506. PubMed ID: 31248984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cofilin-actin rod formation in neuronal processes after brain ischemia.
    Won SJ; Minnella AM; Wu L; Eun CH; Rome E; Herson PS; Shaw AE; Bamburg JR; Swanson RA
    PLoS One; 2018; 13(10):e0198709. PubMed ID: 30325927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular prion protein: A co-receptor mediating neuronal cofilin-actin rod formation induced by β-amyloid and proinflammatory cytokines.
    Walsh KP; Kuhn TB; Bamburg JR
    Prion; 2014; 8(6):375-80. PubMed ID: 25426519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADF/Cofilin-actin rods in neurodegenerative diseases.
    Bamburg JR; Bernstein BW; Davis RC; Flynn KC; Goldsbury C; Jensen JR; Maloney MT; Marsden IT; Minamide LS; Pak CW; Shaw AE; Whiteman I; Wiggan O
    Curr Alzheimer Res; 2010 May; 7(3):241-50. PubMed ID: 20088812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Human Neuronal Culture System for the Study of Cofilin-Actin Rod Pathology.
    Tahtamouni LH; Alderfer SA; Kuhn TB; Minamide LS; Chanda S; Ruff MR; Bamburg JR
    Biomedicines; 2023 Oct; 11(11):. PubMed ID: 38001943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons.
    Kuhn TB; Minamide LS; Tahtamouni LH; Alderfer SA; Walsh KP; Shaw AE; Yanouri O; Haigler HJ; Ruff MR; Bamburg JR
    Biomedicines; 2024 Jan; 12(1):. PubMed ID: 38255199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons.
    Walsh KP; Minamide LS; Kane SJ; Shaw AE; Brown DR; Pulford B; Zabel MD; Lambeth JD; Kuhn TB; Bamburg JR
    PLoS One; 2014; 9(4):e95995. PubMed ID: 24760020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Die in pieces: How Drosophila sheds light on neurite degeneration and clearance.
    Sapar ML; Han C
    J Genet Genomics; 2019 Apr; 46(4):187-199. PubMed ID: 31080046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons.
    Cabell L; Audesirk G
    Int J Dev Neurosci; 1993 Jun; 11(3):357-68. PubMed ID: 7689287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of a novel axon pruning model of Drosophila motor neuron.
    Xu W; Kong W; Gao Z; Huang E; Xie W; Wang S; Rui M
    Biol Open; 2023 Jan; 12(1):. PubMed ID: 36606515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-apoptotic neurite degeneration in apoptotic neuronal death: pivotal role of mitochondrial function in neurites.
    Ikegami K; Koike T
    Neuroscience; 2003; 122(3):617-26. PubMed ID: 14622905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration.
    Bamburg JR; Minamide LS; Wiggan O; Tahtamouni LH; Kuhn TB
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurons survive simultaneous injury to axons and dendrites and regrow both types of processes in vivo.
    Shorey M; Stone MC; Mandel J; Rolls MM
    Dev Biol; 2020 Sep; 465(2):108-118. PubMed ID: 32687893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMIGO1 Promotes Axon Growth and Territory Matching in the Retina.
    Soto F; Shen N; Kerschensteiner D
    J Neurosci; 2022 Mar; 42(13):2678-2689. PubMed ID: 35169021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-124 disinhibits neurite outgrowth in an inflammatory environment.
    Hartmann H; Hoehne K; Rist E; Louw AM; Schlosshauer B
    Cell Tissue Res; 2015 Oct; 362(1):9-20. PubMed ID: 25920589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurite outgrowth triggered by the cell adhesion molecule L1 requires activation and inactivation of the cytoskeletal protein cofilin.
    Figge C; Loers G; Schachner M; Tilling T
    Mol Cell Neurosci; 2012 Feb; 49(2):196-204. PubMed ID: 22019611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury.
    Persson AK; Kim I; Zhao P; Estacion M; Black JA; Waxman SG
    J Neurosci; 2013 Dec; 33(49):19250-61. PubMed ID: 24305821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.