These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38452147)
1. Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data. Ng JYY; Zhang JH; Hui SS; Jiang G; Yau F; Cheng J; Ha AS PLoS One; 2024; 19(3):e0299295. PubMed ID: 38452147 [TBL] [Abstract][Full Text] [Related]
2. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
3. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. Zhou SM; Hill RA; Morgan K; Stratton G; Gravenor MB; Bijlsma G; Brophy S BMJ Open; 2015 May; 5(5):e007447. PubMed ID: 25968000 [TBL] [Abstract][Full Text] [Related]
4. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification. Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126 [TBL] [Abstract][Full Text] [Related]
5. Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature. Vert A; Weber KS; Thai V; Turner E; Beyer KB; Cornish BF; Godkin FE; Wong C; McIlroy WE; Van Ooteghem K BMC Med Res Methodol; 2022 May; 22(1):147. PubMed ID: 35596151 [TBL] [Abstract][Full Text] [Related]
6. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X. Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148 [TBL] [Abstract][Full Text] [Related]
7. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children. Clevenger KA; Pfeiffer KA; Mackintosh KA; McNarry MA; Brønd J; Arvidsson D; Montoye AHK Physiol Meas; 2019 Sep; 40(9):095008. PubMed ID: 31518999 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Accelerometry Methods for Estimating Physical Activity. Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355 [TBL] [Abstract][Full Text] [Related]
9. Activity recognition using a single accelerometer placed at the wrist or ankle. Mannini A; Intille SS; Rosenberger M; Sabatini AM; Haskell W Med Sci Sports Exerc; 2013 Nov; 45(11):2193-203. PubMed ID: 23604069 [TBL] [Abstract][Full Text] [Related]
10. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Choi L; Ward SC; Schnelle JF; Buchowski MS Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772 [TBL] [Abstract][Full Text] [Related]
11. Accelerometer wear-site detection: When one site does not suit all, all of the time. Rowlands AV; Olds TS; Bakrania K; Stanley RM; Parfitt G; Eston RG; Yates T; Fraysse F J Sci Med Sport; 2017 Apr; 20(4):368-372. PubMed ID: 28117147 [TBL] [Abstract][Full Text] [Related]
12. Non-wear or sleep? Evaluation of five non-wear detection algorithms for raw accelerometer data. Ahmadi MN; Nathan N; Sutherland R; Wolfenden L; Trost SG J Sports Sci; 2020 Feb; 38(4):399-404. PubMed ID: 31826746 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry. Nawaratne R; Alahakoon D; De Silva D; O'Halloran PD; Montoye AH; Staley K; Nicholson M; Kingsley MI J Sports Sci; 2021 Mar; 39(6):683-690. PubMed ID: 33121379 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the performance of raw and epoch non-wear algorithms using multiple accelerometers and electrocardiogram recordings. Syed S; Morseth B; Hopstock LA; Horsch A Sci Rep; 2020 Apr; 10(1):5866. PubMed ID: 32246080 [TBL] [Abstract][Full Text] [Related]
15. Generalizability and performance of methods to detect non-wear with free-living accelerometer recordings. Skovgaard EL; Roswall MA; Pedersen NH; Larsen KT; Grøntved A; Brønd JC Sci Rep; 2023 Feb; 13(1):2496. PubMed ID: 36782015 [TBL] [Abstract][Full Text] [Related]
16. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Brailey G; Metcalf B; Price L; Cumming S; Stiles V Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571725 [TBL] [Abstract][Full Text] [Related]
17. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275 [TBL] [Abstract][Full Text] [Related]
18. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]
19. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods. Ahmadi MN; Trost SG PLoS One; 2022; 17(4):e0266970. PubMed ID: 35417492 [TBL] [Abstract][Full Text] [Related]
20. Reference values for wrist-worn accelerometer physical activity metrics in England children and adolescents. Fairclough SJ; Rowlands AV; Del Pozo Cruz B; Crotti M; Foweather L; Graves LEF; Hurter L; Jones O; MacDonald M; McCann DA; Miller C; Noonan RJ; Owen MB; Rudd JR; Taylor SL; Tyler R; Boddy LM Int J Behav Nutr Phys Act; 2023 Mar; 20(1):35. PubMed ID: 36964597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]