These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38452147)
21. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510 [TBL] [Abstract][Full Text] [Related]
22. Calibration and Cross-Validation of Accelerometer Cut-Points to Classify Sedentary Time and Physical Activity from Hip and Non-Dominant and Dominant Wrists in Older Adults. Migueles JH; Cadenas-Sanchez C; Alcantara JMA; Leal-Martín J; Mañas A; Ara I; Glynn NW; Shiroma EJ Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064790 [TBL] [Abstract][Full Text] [Related]
23. A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks. Syed S; Morseth B; Hopstock LA; Horsch A Sci Rep; 2021 Apr; 11(1):8832. PubMed ID: 33893345 [TBL] [Abstract][Full Text] [Related]
24. Adapted Sojourn Models to Estimate Activity Intensity in Youth: A Suite of Tools. Hibbing PR; Ellingson LD; Dixon PM; Welk GJ Med Sci Sports Exerc; 2018 Apr; 50(4):846-854. PubMed ID: 29135657 [TBL] [Abstract][Full Text] [Related]
25. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches. Bakrania K; Yates T; Rowlands AV; Esliger DW; Bunnewell S; Sanders J; Davies M; Khunti K; Edwardson CL PLoS One; 2016; 11(10):e0164045. PubMed ID: 27706241 [TBL] [Abstract][Full Text] [Related]
26. CARL: a running recognition algorithm for free-living accelerometer data. Davis JJ; Straczkiewicz M; Harezlak J; Gruber AH Physiol Meas; 2021 Dec; 42(11):. PubMed ID: 34883471 [TBL] [Abstract][Full Text] [Related]
27. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach. Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492 [TBL] [Abstract][Full Text] [Related]
28. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Fairclough SJ; Noonan R; Rowlands AV; Van Hees V; Knowles Z; Boddy LM Med Sci Sports Exerc; 2016 Feb; 48(2):245-53. PubMed ID: 26375253 [TBL] [Abstract][Full Text] [Related]
29. Performance of Activity Classification Algorithms in Free-Living Older Adults. Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129 [TBL] [Abstract][Full Text] [Related]
30. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
31. Advances in accelerometry for cardiovascular patients: a systematic review with practical recommendations. Vetrovsky T; Clark CCT; Bisi MC; Siranec M; Linhart A; Tufano JJ; Duncan MJ; Belohlavek J ESC Heart Fail; 2020 Oct; 7(5):2021-2031. PubMed ID: 32618431 [TBL] [Abstract][Full Text] [Related]
32. Raw and Count Data Comparability of Hip-Worn ActiGraph GT3X+ and Link Accelerometers. Montoye AHK; Nelson MB; Bock JM; Imboden MT; Kaminsky LA; Mackintosh KA; McNarry MA; Pfeiffer KA Med Sci Sports Exerc; 2018 May; 50(5):1103-1112. PubMed ID: 29283934 [TBL] [Abstract][Full Text] [Related]
33. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155 [TBL] [Abstract][Full Text] [Related]
34. Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data. Farrahi V; Niemela M; Tjurin P; Kangas M; Korpelainen R; Jamsa T IEEE J Biomed Health Inform; 2020 Jan; 24(1):27-38. PubMed ID: 31107668 [TBL] [Abstract][Full Text] [Related]
35. Machine learning for activity recognition: hip versus wrist data. Trost SG; Zheng Y; Wong WK Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887 [TBL] [Abstract][Full Text] [Related]
37. Using accelerometry to classify physical activity intensity in older adults: What is the optimal wear-site? Duncan MJ; Rowlands A; Lawson C; Leddington Wright S; Hill M; Morris M; Eyre E; Tallis J Eur J Sport Sci; 2020 Sep; 20(8):1131-1139. PubMed ID: 31726952 [No Abstract] [Full Text] [Related]
38. Accelerometer-measured physical activity in mid-age Australian adults. Mielke GI; Burton NW; Brown WJ BMC Public Health; 2022 Oct; 22(1):1952. PubMed ID: 36271338 [TBL] [Abstract][Full Text] [Related]
39. Validation of accelerometer wear and nonwear time classification algorithm. Choi L; Liu Z; Matthews CE; Buchowski MS Med Sci Sports Exerc; 2011 Feb; 43(2):357-64. PubMed ID: 20581716 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the Validity and Generalizability of Machine Learning Algorithms for the Prediction of Energy Expenditure: Validation Study. O'Driscoll R; Turicchi J; Hopkins M; Duarte C; Horgan GW; Finlayson G; Stubbs RJ JMIR Mhealth Uhealth; 2021 Aug; 9(8):e23938. PubMed ID: 34346890 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]