These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38452396)

  • 1. Substrate Promiscuity of the Triceptide Maturase XncB Leads to Incorporation of Various Amino Acids and Detection of Oxygenated Products.
    Phan CS; Chang L; Nguyen TQN; Suarez AFL; Ho XH; Chen H; Koh IYF; Morinaka BI
    ACS Chem Biol; 2024 Apr; 19(4):855-860. PubMed ID: 38452396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides.
    Purushothaman M; Chang L; Zhong RJ; Morinaka BI
    ACS Chem Biol; 2024 Jun; 19(6):1229-1236. PubMed ID: 38742762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Prevalent Group of Actinobacterial Radical SAM/SPASM Maturases Involved in Triceptide Biosynthesis.
    Phan CS; Morinaka BI
    ACS Chem Biol; 2022 Dec; 17(12):3284-3289. PubMed ID: 36454686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization.
    Suarez AFL; Nguyen TQN; Chang L; Tooh YW; Yong RHS; Leow LC; Koh IYF; Chen H; Koh JWH; Selvanayagam A; Lim V; Tan YE; Agatha I; Winnerdy FR; Morinaka BI
    ACS Chem Biol; 2024 Mar; 19(3):774-783. PubMed ID: 38417140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs.
    Sugiyama R; Suarez AFL; Morishita Y; Nguyen TQN; Tooh YW; Roslan MNHB; Lo Choy J; Su Q; Goh WY; Gunawan GA; Wong FT; Morinaka BI
    J Am Chem Soc; 2022 Jul; 144(26):11580-11593. PubMed ID: 35729768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution and Substrate Specificity of the Thioether-Forming Radical
    Precord TW; Mahanta N; Mitchell DA
    ACS Chem Biol; 2019 Sep; 14(9):1981-1989. PubMed ID: 31449382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Production of Diverse β-Amino Acid-Containing Proteins.
    Lakis E; Magyari S; Piel J
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202202695. PubMed ID: 35481938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic identification of a novel toxin protein (Txp40) from Xenorhabdus nematophila and its insecticidal activity against larvae of Plutella xylostella.
    Park JM; Kim M; Min J; Lee SM; Shin KS; Oh SD; Oh SJ; Kim YH
    J Agric Food Chem; 2012 Apr; 60(16):4053-9. PubMed ID: 22352834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic enzyme production by strains of the insect pathogen xenorhabdus and characterization of an early-log-phase-secreted protease as a potential virulence factor.
    Massaoud MK; Marokházi J; Fodor A; Venekei I
    Appl Environ Microbiol; 2010 Oct; 76(20):6901-9. PubMed ID: 20802071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging Substrate Promiscuity of a Radical
    Eastman KAS; Kincannon WM; Bandarian V
    ACS Cent Sci; 2022 Aug; 8(8):1209-1217. PubMed ID: 36032765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens.
    Vigneux F; Zumbihl R; Jubelin G; Ribeiro C; Poncet J; Baghdiguian S; Givaudan A; Brehélin M
    J Biol Chem; 2007 Mar; 282(13):9571-9580. PubMed ID: 17229739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification, and functional analysis of novel RelE operon from X. nematophila.
    Rathore JS; Gautam LK
    ScientificWorldJournal; 2014; 2014():428159. PubMed ID: 25538952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and Function of the Chitin Binding Protein from
    Liu J; Song P; Zhang J; Nangong Z; Liu X; Gao Y; Wang Q
    Protein Pept Lett; 2019 Jul; 26(6):414-422. PubMed ID: 30919769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the leader peptide sequence on the lanthipeptide secretion level.
    Lagedroste M; Smits SHJ; Schmitt L
    FEBS J; 2021 Jul; 288(14):4348-4363. PubMed ID: 33482024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease.
    Orchard SS; Goodrich-Blair H
    Appl Environ Microbiol; 2004 Sep; 70(9):5621-7. PubMed ID: 15345451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine-Containing Rhabdopeptide/Xenortide-like Peptides from Heterologous Expression of the Biosynthetic Gene Cluster kj12ABC in Escherichia coli.
    Zhao L; Cai X; Kaiser M; Bode HB
    J Nat Prod; 2018 Oct; 81(10):2292-2295. PubMed ID: 30302998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new recombineering system for Photorhabdus and Xenorhabdus.
    Yin J; Zhu H; Xia L; Ding X; Hoffmann T; Hoffmann M; Bian X; Müller R; Fu J; Stewart AF; Zhang Y
    Nucleic Acids Res; 2015 Mar; 43(6):e36. PubMed ID: 25539914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a lipoprotein, NilC, required by Xenorhabdus nematophila for mutualism with its nematode host.
    Cowles CE; Goodrich-Blair H
    Mol Microbiol; 2004 Oct; 54(2):464-77. PubMed ID: 15469517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining Reaction Specificity in PvcB, a Source of Diversity in Isonitrile-Containing Natural Products.
    Zhu J; Lippa GM; Gulick AM; Tipton PA
    Biochemistry; 2015 Apr; 54(16):2659-69. PubMed ID: 25866990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the PixA inclusion body protein of Xenorhabdus nematophila.
    Goetsch M; Owen H; Goldman B; Forst S
    J Bacteriol; 2006 Apr; 188(7):2706-10. PubMed ID: 16547059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.