These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38452526)
1. A perceptual approach to address complex water management issues in lowland permeable catchments. Homan T; Howden NJK; Barden R; Kasprzyk-Hordern B; Hofman J Water Res; 2024 May; 254():121406. PubMed ID: 38452526 [TBL] [Abstract][Full Text] [Related]
2. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496 [TBL] [Abstract][Full Text] [Related]
3. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
4. The water quality of the River Kennet: initial observations on a lowland chalk stream impacted by sewage inputs and phosphorus remediation. Neal C; Jarvie HP; Howarth SM; Whitehead PG; Williams RJ; Neal M; Harrow M; Wickham H Sci Total Environ; 2000 May; 251-252():477-95. PubMed ID: 10847179 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus-calcium carbonate saturation relationships in a lowland chalk river impacted by sewage inputs and phosphorus remediation: an assessment of phosphorus self-cleansing mechanisms in natural waters. Neal C; Jarvie HP; Williams RJ; Neal M; Wickham H; Hill L Sci Total Environ; 2002 Jan; 282-283():295-310. PubMed ID: 11846075 [TBL] [Abstract][Full Text] [Related]
6. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Jarvie HP; Neal C; Withers PJ Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299 [TBL] [Abstract][Full Text] [Related]
7. Temporal variability of micro-organic contaminants in lowland chalk catchments: New insights into contaminant sources and hydrological processes. Manamsa K; Lapworth DJ; Stuart ME Sci Total Environ; 2016 Oct; 568():566-577. PubMed ID: 26850859 [TBL] [Abstract][Full Text] [Related]
8. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Mas-Pla J; Menció A Environ Sci Pollut Res Int; 2019 Jan; 26(3):2184-2202. PubMed ID: 29644604 [TBL] [Abstract][Full Text] [Related]
9. Nutrient hydrochemistry for a groundwater-dominated catchment: the Hampshire Avon, UK. Jarvie HP; Neal C; Withers PJ; Wescott C; Acornley RM Sci Total Environ; 2005 May; 344(1-3):143-58. PubMed ID: 15907515 [TBL] [Abstract][Full Text] [Related]
10. Quantifying groundwater phosphorus flux to rivers in a typical agricultural watershed in eastern China. Pan Z; Hu M; Shen H; Wu H; Zhou J; Wu K; Chen D Environ Sci Pollut Res Int; 2023 Feb; 30(8):19873-19889. PubMed ID: 36242662 [TBL] [Abstract][Full Text] [Related]
11. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent. Bowes MJ; Neal C; Jarvie HP; Smith JT; Davies HN Sci Total Environ; 2010 Sep; 408(19):4239-50. PubMed ID: 20547413 [TBL] [Abstract][Full Text] [Related]
12. Use of modeling to protect, plan, and manage water resources in catchment areas. Constant T; Charrière S; Lioeddine A; Emsellem Y Environ Sci Pollut Res Int; 2016 Aug; 23(16):15841-51. PubMed ID: 26452653 [TBL] [Abstract][Full Text] [Related]
13. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. Orban P; Brouyère S; Batlle-Aguilar J; Couturier J; Goderniaux P; Leroy M; Maloszewski P; Dassargues A J Contam Hydrol; 2010 Oct; 118(1-2):79-93. PubMed ID: 20864207 [TBL] [Abstract][Full Text] [Related]
14. Modelling of phosphorus inputs to rivers from diffuse and point sources. Bowes MJ; Smith JT; Jarvie HP; Neal C Sci Total Environ; 2008 Jun; 395(2-3):125-38. PubMed ID: 18367235 [TBL] [Abstract][Full Text] [Related]
15. Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK. Jarvi HP; Neal C; Williams RJ; Neal M; Wickham HD; Hill LK; Wade AJ; Warwick A; White J Sci Total Environ; 2002 Jan; 282-283():175-203. PubMed ID: 11846070 [TBL] [Abstract][Full Text] [Related]
16. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling. Greene S; Taylor D; McElarney YR; Foy RH; Jordan P Sci Total Environ; 2011 May; 409(11):2211-21. PubMed ID: 21429559 [TBL] [Abstract][Full Text] [Related]
17. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover - A case study. Subba Rao N; Dinakar A; Sun L J Contam Hydrol; 2022 Jun; 248():103990. PubMed ID: 35452913 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal Variation in Groundwater Quality and Source Apportionment along the Ye River of North China Using the PMF Model. Niu C; Zhang Q; Xiao L; Wang H Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162801 [TBL] [Abstract][Full Text] [Related]
19. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management. Bowes MJ; Hilton J; Irons GP; Hornby DD Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511 [TBL] [Abstract][Full Text] [Related]
20. Estimation of nutrient sources and fate in groundwater near a large weir-regulated river using multiple isotopes and microbial signatures. Kaown D; Koh DC; Mayer B; Mahlknecht J; Ju Y; Rhee SK; Kim JH; Park DK; Park I; Lee HL; Yoon YY; Lee KK J Hazard Mater; 2023 Mar; 446():130703. PubMed ID: 36587594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]