These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38452912)

  • 1. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds.
    Baskaran D; Dhamodharan D; Behera US; Byun HS
    Environ Res; 2024 Jun; 251(Pt 1):118472. PubMed ID: 38452912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review.
    Li S; Lin Y; Liu G; Shi C
    Environ Sci Process Impacts; 2023 Apr; 25(4):727-740. PubMed ID: 36897314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.
    Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch
    J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air ionization as a control technology for off-gas emissions of volatile organic compounds.
    Kim KH; Szulejko JE; Kumar P; Kwon EE; Adelodun AA; Reddy PAK
    Environ Pollut; 2017 Jun; 225():729-743. PubMed ID: 28347612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air.
    Li T; Li H; Li C
    Chemosphere; 2020 Jul; 250():126338. PubMed ID: 32126329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of VOCs onto engineered carbon materials: A review.
    Zhang X; Gao B; Creamer AE; Cao C; Li Y
    J Hazard Mater; 2017 Sep; 338():102-123. PubMed ID: 28535479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and membrane separation for removal and recovery of volatile organic compounds.
    Gan G; Fan S; Li X; Zhang Z; Hao Z
    J Environ Sci (China); 2023 Jan; 123():96-115. PubMed ID: 36522017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation.
    Wu M; Huang H; Leung DYC
    J Environ Manage; 2022 Apr; 307():114559. PubMed ID: 35066195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of non-thermal plasma -catalysis: The mutual influence and sources of synergetic effect for boosting volatile organic compounds removal.
    Belkessa N; Assadi AA; Bouzaza A; Nguyen-Tri P; Amrane A; Khezami L
    Environ Res; 2024 Sep; 257():119333. PubMed ID: 38849000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underestimated public health risks caused by overestimated VOC removal in wastewater treatment processes.
    Yang J; Wang K; Zhao Q; Huang L; Yuan CS; Chen WH; Yang WB
    Environ Sci Process Impacts; 2014 Feb; 16(2):271-9. PubMed ID: 24337048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase.
    Li C; He L; Yao X; Yao Z
    Chemosphere; 2022 May; 295():133868. PubMed ID: 35131275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of volatile organic compounds using gliding arc discharge plasma.
    Gong X; Lin Y; Li X; Wu A; Zhang H; Yan J; Du C
    J Air Waste Manag Assoc; 2020 Feb; 70(2):138-157. PubMed ID: 31815602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials.
    David E; Niculescu VC
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Catalytic Elimination of Toxic Volatile Organic Compounds via Advanced Oxidation Process Wet Scrubbing with Bifunctional Cobalt Sulfide/Activated Carbon Catalysts.
    Xiang Y; Xie X; Zhong H; Xiao F; Xie R; Liu B; Guo H; Hu D; Zhang P; Huang H
    Environ Sci Technol; 2024 May; 58(20):8846-8856. PubMed ID: 38728579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
    Hodgson AT; Destaillats H; Sullivan DP; Fisk WJ
    Indoor Air; 2007 Aug; 17(4):305-16. PubMed ID: 17661927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation.
    Zhang K; Ding H; Pan W; Mu X; Qiu K; Ma J; Zhao Y; Song J; Zhang Z
    Environ Sci Technol; 2022 Jul; 56(13):9220-9236. PubMed ID: 35580211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview on recent progress in photocatalytic air purification: Metal-based and metal-free photocatalysis.
    Sharma S; Kumar R; Raizada P; Ahamad T; Alshehri SM; Nguyen VH; Thakur S; Nguyen CC; Kim SY; Le QV; Singh P
    Environ Res; 2022 Nov; 214(Pt 3):113995. PubMed ID: 35932830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review.
    Zou W; Gao B; Ok YS; Dong L
    Chemosphere; 2019 Mar; 218():845-859. PubMed ID: 30508803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: Review and prospect.
    Sun X; Li C; Yu B; Wang J; Wang W
    J Environ Sci (China); 2023 Mar; 125():427-442. PubMed ID: 36375926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.