BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38453122)

  • 1. Current perspective in research and industrial applications of microbial cellulases.
    Sutaoney P; Rai SN; Sinha S; Choudhary R; Gupta AK; Singh SK; Banerjee P
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130639. PubMed ID: 38453122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulase and xylanase synergism in industrial biotechnology.
    Bajaj P; Mahajan R
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8711-8724. PubMed ID: 31628521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview on marine cellulolytic enzymes and their potential applications.
    Barzkar N; Sohail M
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6873-6892. PubMed ID: 32556412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biological degradation of cellulose.
    Béguin P; Aubert JP
    FEMS Microbiol Rev; 1994 Jan; 13(1):25-58. PubMed ID: 8117466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose, cellulases and cellulosomes.
    Bayer EA; Chanzy H; Lamed R; Shoham Y
    Curr Opin Struct Biol; 1998 Oct; 8(5):548-57. PubMed ID: 9818257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.
    Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK
    BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes.
    Zheng Y; Maruoka M; Nanatani K; Hidaka M; Abe N; Kaneko J; Sakai Y; Abe K; Yokota A; Yabe S
    J Biosci Bioeng; 2021 Jun; 131(6):622-630. PubMed ID: 33676867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processivity and the Mechanisms of Processive Endoglucanases.
    Wu S; Wu S
    Appl Biochem Biotechnol; 2020 Feb; 190(2):448-463. PubMed ID: 31378843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.
    Tsuji A; Tominaga K; Nishiyama N; Yuasa K
    PLoS One; 2013; 8(6):e65418. PubMed ID: 23762366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of fermentable glucose from bioconversion of cellulose using efficient microbial cellulases produced from water hyacinth waste.
    Tripathi M; Lal B; Syed A; Mishra PK; Elgorban AM; Verma M; Singh R; Mohammad A; Srivastava N
    Int J Biol Macromol; 2023 Dec; 252():126376. PubMed ID: 37595712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprospecting thermophiles for cellulase production: a review.
    Acharya S; Chaudhary A
    Braz J Microbiol; 2012 Jul; 43(3):844-56. PubMed ID: 24031898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.
    Strakowska J; Błaszczyk L; Chełkowski J
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S2-13. PubMed ID: 24532413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost.
    Amore A; Pepe O; Ventorino V; Birolo L; Giangrande C; Faraco V
    Microb Cell Fact; 2012 Dec; 11():164. PubMed ID: 23267666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current perspective on production and applications of microbial cellulases: a review.
    Bhardwaj N; Kumar B; Agrawal K; Verma P
    Bioresour Bioprocess; 2021 Oct; 8(1):95. PubMed ID: 38650192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable cellulases: Current status and perspectives.
    Patel AK; Singhania RR; Sim SJ; Pandey A
    Bioresour Technol; 2019 May; 279():385-392. PubMed ID: 30685132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid.
    Santos VT; Esteves PJ; Milagres AM; Carvalho W
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1089-98. PubMed ID: 20953894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.