These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38453408)
1. Synthesizing Contrast-Enhanced MR Images from Noncontrast MR Images Using Deep Learning. Murugesan G; Yu FF; Achilleos M; DeBevits J; Nalawade S; Ganesh C; Wagner B; Madhuranthakam AJ; Maldjian JA AJNR Am J Neuroradiol; 2024 Mar; 45(3):312-319. PubMed ID: 38453408 [TBL] [Abstract][Full Text] [Related]
2. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Kleesiek J; Morshuis JN; Isensee F; Deike-Hofmann K; Paech D; Kickingereder P; Köthe U; Rother C; Forsting M; Wick W; Bendszus M; Schlemmer HP; Radbruch A Invest Radiol; 2019 Oct; 54(10):653-660. PubMed ID: 31261293 [TBL] [Abstract][Full Text] [Related]
3. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. Gong E; Pauly JM; Wintermark M; Zaharchuk G J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269 [TBL] [Abstract][Full Text] [Related]
4. Amplifying the Effects of Contrast Agents on Magnetic Resonance Images Using a Deep Learning Method Trained on Synthetic Data. Fringuello Mingo A; Colombo Serra S; Macula A; Bella D; La Cava F; Alì M; Papa S; Tedoldi F; Smits M; Bifone A; Valbusa G Invest Radiol; 2023 Dec; 58(12):853-864. PubMed ID: 37378418 [TBL] [Abstract][Full Text] [Related]
5. Contrast-enhanced MRI synthesis using dense-dilated residual convolutions based 3D network toward elimination of gadolinium in neuro-oncology. Osman AFI; Tamam NM J Appl Clin Med Phys; 2023 Dec; 24(12):e14120. PubMed ID: 37552487 [TBL] [Abstract][Full Text] [Related]
6. Reduction of Gadolinium-Based Contrast Agents in MRI Using Convolutional Neural Networks and Different Input Protocols: Limited Interchangeability of Synthesized Sequences With Original Full-Dose Images Despite Excellent Quantitative Performance. Haase R; Pinetz T; Bendella Z; Kobler E; Paech D; Block W; Effland A; Radbruch A; Deike-Hofmann K Invest Radiol; 2023 Jun; 58(6):420-430. PubMed ID: 36735399 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance imaging contrast enhancement synthesis using cascade networks with local supervision. Xie H; Lei Y; Wang T; Roper J; Axente M; Bradley JD; Liu T; Yang X Med Phys; 2022 May; 49(5):3278-3287. PubMed ID: 35229344 [TBL] [Abstract][Full Text] [Related]
8. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study. Ammari S; Bône A; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Menu Y; Bidault F; Nicolas F; Robert P; Rohé MM; Lassau N Invest Radiol; 2022 Feb; 57(2):99-107. PubMed ID: 34324463 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based 3D MRI contrast-enhanced synthesis from a 2D noncontrast T2Flair sequence. Wang Y; Wu W; Yang Y; Hu H; Yu S; Dong X; Chen F; Liu Q Med Phys; 2022 Jul; 49(7):4478-4493. PubMed ID: 35396712 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the relationship between magnetic resonance image quality metrics and deep learning-based segmentation accuracy of brain tumors. Muthusivarajan R; Celaya A; Yung JP; Long JP; Viswanath SE; Marcus DS; Chung C; Fuentes D Med Phys; 2024 Jul; 51(7):4898-4906. PubMed ID: 38640464 [TBL] [Abstract][Full Text] [Related]
11. Direct synthesis of multi-contrast brain MR images from MR multitasking spatial factors using deep learning. Qiu S; Ma S; Wang L; Chen Y; Fan Z; Moser FG; Maya M; Sati P; Sicotte NL; Christodoulou AG; Xie Y; Li D Magn Reson Med; 2023 Oct; 90(4):1672-1681. PubMed ID: 37246485 [TBL] [Abstract][Full Text] [Related]
12. Half-dose gadolinium-enhanced MR imaging with magnetization transfer technique in brain tumors: comparison with conventional contrast-enhanced MR imaging. Han D; Chang KH; Han MH; Cho JY; Han SW; Kim HD; Seong SO AJR Am J Roentgenol; 1998 Jan; 170(1):189-93. PubMed ID: 9423630 [TBL] [Abstract][Full Text] [Related]
13. Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model. Pennig L; Shahzad R; Caldeira L; Lennartz S; Thiele F; Goertz L; Zopfs D; Meißner AK; Fürtjes G; Perkuhn M; Kabbasch C; Grau S; Borggrefe J; Laukamp KR AJNR Am J Neuroradiol; 2021 Apr; 42(4):655-662. PubMed ID: 33541907 [TBL] [Abstract][Full Text] [Related]
14. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model. Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284 [TBL] [Abstract][Full Text] [Related]
15. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602 [TBL] [Abstract][Full Text] [Related]
16. From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study. Bône A; Ammari S; Menu Y; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Garcia GCTE; Nicolas F; Robert P; Rohé MM; Lassau N Invest Radiol; 2022 Aug; 57(8):527-535. PubMed ID: 35446300 [TBL] [Abstract][Full Text] [Related]
17. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging. Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395 [TBL] [Abstract][Full Text] [Related]