These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38453538)
1. Direct lithium extraction from spent batteries for efficient lithium recycling. Liu W; Liu M; Ma F; Qin M; Zhong W; Chen X; Zeng Z; Cheng S; Xie J Sci Bull (Beijing); 2024 Jun; 69(11):1697-1705. PubMed ID: 38453538 [TBL] [Abstract][Full Text] [Related]
2. Facile separation and regeneration of LiFePO Zhong X; Mao X; Qin W; Zeng H; Zhao G; Han J Waste Manag; 2023 Feb; 156():236-246. PubMed ID: 36495701 [TBL] [Abstract][Full Text] [Related]
3. Recycling of LiFePO Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980 [TBL] [Abstract][Full Text] [Related]
4. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036 [TBL] [Abstract][Full Text] [Related]
5. Selective leaching process for efficient and rapid recycling of spent lithium iron phosphate batteries. Xiong Y; Guo Z; Mei T; Han Y; Wang Y; Xiong X; Tang Y; Wang X Waste Manag Res; 2023 Nov; 41(11):1613-1621. PubMed ID: 37102334 [TBL] [Abstract][Full Text] [Related]
6. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572 [TBL] [Abstract][Full Text] [Related]
7. Potential Controllable Redox Couple for Mild and Efficient Lithium Recovery from Spent Batteries. Chang X; Fan M; Yuan B; Gu CF; He WH; Li C; Feng XX; Xin S; Meng Q; Wan LJ; Guo YG Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202310435. PubMed ID: 37620985 [TBL] [Abstract][Full Text] [Related]
8. Life Cycle of LiFePO Rostami H; Valio J; Tynjälä P; Lassi U; Suominen P Chemphyschem; 2024 Dec; 25(24):e202400459. PubMed ID: 39264359 [TBL] [Abstract][Full Text] [Related]
9. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Wu Z; Zhu H; Bi H; He P; Gao S Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691 [TBL] [Abstract][Full Text] [Related]
10. A clean and sustainable method for recycling of lithium from spent lithium iron phosphate battery powder by using formic acid and oxygen. Zhao T; Mahandra H; Choi Y; Li W; Zhang Z; Zhao Z; Chen A Sci Total Environ; 2024 Apr; 920():170930. PubMed ID: 38354790 [TBL] [Abstract][Full Text] [Related]
11. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review. Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410 [TBL] [Abstract][Full Text] [Related]
12. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition. Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638 [TBL] [Abstract][Full Text] [Related]
13. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Chen X; Cao L; Kang D; Li J; Zhou T; Ma H Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000 [TBL] [Abstract][Full Text] [Related]
14. High-efficiency recycling of spent lithium-ion batteries: A double closed-loop process. Luo Y; Ou L; Yin C Sci Total Environ; 2023 Jun; 875():162567. PubMed ID: 36871725 [TBL] [Abstract][Full Text] [Related]
15. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas. Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393 [TBL] [Abstract][Full Text] [Related]
16. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO Qing J; Wu X; Zeng L; Guan W; Cao Z; Li Q; Wang M; Zhang G; Wu S J Environ Manage; 2024 Apr; 356():120729. PubMed ID: 38537464 [TBL] [Abstract][Full Text] [Related]
17. Efficient Regeneration of Graphite from Spent Lithium-Ion Batteries through Combination of Thermal and Wet Metallurgical Approaches. Yu R; Zhou C; Zhou X; Yang J; Tang J; Zhang Y Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203061 [TBL] [Abstract][Full Text] [Related]
18. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Wang M; Liu K; Yu J; Zhang Q; Zhang Y; Valix M; Tsang DCW Glob Chall; 2023 Mar; 7(3):2200237. PubMed ID: 36910467 [TBL] [Abstract][Full Text] [Related]
19. Selective Extraction of Critical Metals from Spent Lithium-Ion Batteries. Wang M; Liu K; Xu Z; Dutta S; Valix M; Alessi DS; Huang L; Zimmerman JB; Tsang DCW Environ Sci Technol; 2023 Mar; 57(9):3940-3950. PubMed ID: 36800282 [TBL] [Abstract][Full Text] [Related]
20. Selective recovery of lithium from spent lithium iron phosphate batteries. Wu Y; Li G; Zhao S; Yin Y; Wang B; He W Waste Manag Res; 2024 Jan; ():734242X241227375. PubMed ID: 38268141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]