These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38453686)

  • 1. Wetting Behavior of Kerogen Surfaces: Insights from Molecular Dynamics.
    Sanchouli N; Babaei S; Kanduč M; Molaei F; Ostadhassan M
    Langmuir; 2024 Mar; 40(11):5715-5724. PubMed ID: 38453686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Origin of Wettability Alteration of Subsurface Porous Media upon Gas Pressure Variations.
    Ho TA; Wang Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41330-41338. PubMed ID: 34410713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Study on CO
    Li W; Zhang M; Nan Y; Pang W; Jin Z
    Langmuir; 2021 Jan; 37(1):542-552. PubMed ID: 33348983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Insights into CO
    Xie Z; Liang Y; Sun Q; Yu L; Wang D; Liu B
    Langmuir; 2024 Jan; 40(3):1717-1727. PubMed ID: 38206820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shale Wettability Characteristics via Air/Brines and Air/Oil Contact Angles and Influence of Controlling Factors: A Case Study of Lower Indus Basin, Pakistan.
    Bhutto DK; Shar AM; Abbasi GR; Ansari U
    ACS Omega; 2023 Jan; 8(1):688-701. PubMed ID: 36643511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakthrough pressure of oil displacement by water through the ultra-narrow kerogen pore throat from the Young-Laplace equation and molecular dynamic simulations.
    Zhao Y; Li W; Zhan S; Jin Z
    Phys Chem Chem Phys; 2022 Jul; 24(28):17195-17209. PubMed ID: 35792334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water wettability dependence on surface structure of a snail shell.
    Yamagishi R; Maeda H; Kasuga T
    Bioinspir Biomim; 2020 Mar; 15(3):036001. PubMed ID: 32031998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ReaxFF Molecular Dynamics Study on the Microscopic Mechanism for Kerogen Pyrolysis.
    Chen Y; Wang Z; Li B; Yu K; Wang H; Wang J; Huo Y; Wang J
    Langmuir; 2023 Dec; 39(50):18581-18593. PubMed ID: 38060286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Wetting of Crystalline Cellulose.
    Trentin LN; Pereira CS; Silveira RL; Hill S; Sorieul M; Skaf MS
    Biomacromolecules; 2021 Oct; 22(10):4251-4261. PubMed ID: 34515474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane and CO
    Psarras P; Holmes R; Vishal V; Wilcox J
    Acc Chem Res; 2017 Aug; 50(8):1818-1828. PubMed ID: 28762725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation-Induced Wetting Transition of Nanodroplets on Nanopatterned Surfaces with Concentric Rings: Surface Geometry and Wettability Effects.
    Gao S; Long J; Liu W; Liu Z
    Langmuir; 2019 Jul; 35(29):9546-9553. PubMed ID: 31298861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations.
    Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Fluid Properties on Contact Angles in the Eagle Ford Shale Measured with Spontaneous Imbibition.
    McFarlane J; DiStefano VH; Bingham PR; Bilheux HZ; Cheshire MC; Hale RE; Hussey DS; Jacobson DL; Kolbus L; LaManna JM; Perfect E; Rivers M; Santodonato LJ; Anovitz LM
    ACS Omega; 2021 Dec; 6(48):32618-32630. PubMed ID: 34901610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-fluid wetting behavior of a hydrophobic silicon nanowire array.
    Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R
    Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness.
    AlRatrout A; Blunt MJ; Bijeljic B
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8901-8906. PubMed ID: 30120127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study of the Wettability Characteristic of Thermally Treated Shale.
    Yang J; Gu C; Chen W; Yuan Y; Wang T; Sun J
    ACS Omega; 2020 Oct; 5(40):25891-25898. PubMed ID: 33073114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation Study on the Occurrence of Shale Oil in Hybrid Nanopores.
    Fang Y; Li Z; Yang E; Sha M; Song S
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Surface Properties of Organic Matter and Clay Minerals in Shale.
    Tian S; Wang T; Li G; Sheng M; Zhang P
    Langmuir; 2019 Apr; 35(17):5711-5718. PubMed ID: 30917659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.