These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38453909)
1. Natural variation in BnaA9.NF-YA7 contributes to drought tolerance in Brassica napus L. Wang J; Mao L; Li Y; Lu K; Qu C; Tang Z; Li J; Liu L Nat Commun; 2024 Mar; 15(1):2082. PubMed ID: 38453909 [TBL] [Abstract][Full Text] [Related]
2. Jiao P; Liang Y; Chen S; Yuan Y; Chen Y; Hu H Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175713 [TBL] [Abstract][Full Text] [Related]
3. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Lee DK; Kim HI; Jang G; Chung PJ; Jeong JS; Kim YS; Bang SW; Jung H; Choi YD; Kim JK Plant Sci; 2015 Dec; 241():199-210. PubMed ID: 26706071 [TBL] [Abstract][Full Text] [Related]
4. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1. Feng Y; Cui R; Wang S; He M; Hua Y; Shi L; Ye X; Xu F Plant Biotechnol J; 2020 May; 18(5):1241-1254. PubMed ID: 31705705 [TBL] [Abstract][Full Text] [Related]
5. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L. Xu L; Lin Z; Tao Q; Liang M; Zhao G; Yin X; Fu R PLoS One; 2014; 9(10):e111354. PubMed ID: 25356551 [TBL] [Abstract][Full Text] [Related]
6. TaNF-YA7-5B, a gene encoding nuclear factor Y (NF-Y) subunit A in Triticum aestivum, confers plant tolerance to PEG-inducing dehydration simulating drought through modulating osmotic stress-associated physiological processes. Zhao Y; Zhang Y; Li T; Ni C; Bai X; Lin R; Xiao K Plant Physiol Biochem; 2022 Oct; 188():81-96. PubMed ID: 35988390 [TBL] [Abstract][Full Text] [Related]
7. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Shi L; Song J; Guo C; Wang B; Guan Z; Yang P; Chen X; Zhang Q; King GJ; Wang J; Liu K Plant J; 2019 May; 98(3):524-539. PubMed ID: 30664290 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide analysis of TOPLESS/TOPLESS-RELATED co-repressors and functional characterization of BnaA9.TPL regulating the embryogenesis and leaf morphology in rapeseed. Zhang X; Chen Y; Chen H; Guo C; Su X; Mu T; Feng B; Wang Y; Liu Z; Zhang B; Li Y; Zhang H; Yuan W; Li H Plant Sci; 2024 Sep; 346():112149. PubMed ID: 38851591 [TBL] [Abstract][Full Text] [Related]
9. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Li J; Duan Y; Sun N; Wang L; Feng S; Fang Y; Wang Y Plant Sci; 2021 Dec; 313():111062. PubMed ID: 34763855 [TBL] [Abstract][Full Text] [Related]
10. The transcription factor BnaA9.WRKY47 coordinates leaf senescence and nitrogen remobilization in Brassica napus. Cui R; Feng Y; Yao J; Shi L; Wang S; Xu F J Exp Bot; 2023 Sep; 74(18):5606-5619. PubMed ID: 37474125 [TBL] [Abstract][Full Text] [Related]
11. RING-type E3 ligase BnaJUL1 ubiquitinates and degrades BnaTBCC1 to regulate drought tolerance in Brassica napus L. Hu J; Luo M; Zhou X; Wang Z; Yan L; Hong D; Yang G; Zhang X Plant Cell Environ; 2024 Apr; 47(4):1023-1040. PubMed ID: 37984059 [TBL] [Abstract][Full Text] [Related]
12. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661 [TBL] [Abstract][Full Text] [Related]
13. Calcium-dependent Protein Kinase 5 (CPK5) positively modulates drought tolerance through phosphorylating ABA-Responsive Element Binding Factors in oilseed rape (Brassica napus L.). Cheng H; Pan G; Zhou N; Zhai Z; Yang L; Zhu H; Cui X; Zhao P; Zhang H; Li S; Yang B; Jiang YQ Plant Sci; 2022 Feb; 315():111125. PubMed ID: 35067297 [TBL] [Abstract][Full Text] [Related]
14. The transcription factor BnaWRKY10 regulates cytokinin dehydrogenase BnaCKX2 to control cytokinin distribution and seed size in Brassica napus. Yan G; Li S; Ma M; Quan C; Tian X; Tu J; Shen J; Yi B; Fu T; Ma C; Guo L; Dai C J Exp Bot; 2023 Sep; 74(17):4994-5013. PubMed ID: 37246599 [TBL] [Abstract][Full Text] [Related]
15. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040 [TBL] [Abstract][Full Text] [Related]
16. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). Zhou H; Xiao X; Asjad A; Han D; Zheng W; Xiao G; Huang Y; Zhou Q BMC Plant Biol; 2022 Mar; 22(1):130. PubMed ID: 35313826 [TBL] [Abstract][Full Text] [Related]
17. Differential response of phenylpropanoid pathway as linked to hormonal change in two Brassica napus cultivars contrasting drought tolerance. Lee BR; Park SH; Muchlas M; La VH; Al Mamun M; Bae DW; Kim TH Physiol Plant; 2023; 175(6):e14115. PubMed ID: 38148216 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Xiong JL; Ma N Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499633 [TBL] [Abstract][Full Text] [Related]
19. DEAD-box RNA helicase 6 regulates drought and abscisic acid stress responses in rapeseed (Brassica napus). Zhang XD; Han Y; Yang ZM; Sun D Gene; 2023 Nov; 886():147717. PubMed ID: 37595852 [TBL] [Abstract][Full Text] [Related]
20. Combining Physio-Biochemical Characterization and Transcriptome Analysis Reveal the Responses to Varying Degrees of Drought Stress in Fang S; Zhao P; Tan Z; Peng Y; Xu L; Jin Y; Wei F; Guo L; Yao X Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955689 [No Abstract] [Full Text] [Related] [Next] [New Search]