BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38453924)

  • 1. CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression.
    Cai H; Zhang B; Ahrenfeldt J; Joseph JV; Riedel M; Gao Z; Thomsen SK; Christensen DS; Bak RO; Hager H; Vendelbo MH; Gao X; Birkbak N; Thomsen MK
    Nat Commun; 2024 Mar; 15(1):2088. PubMed ID: 38453924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of PTEN‑knockout (‑/‑) murine prostate cancer cells using the CRISPR/Cas9 system and comprehensive gene expression profiling.
    Takao A; Yoshikawa K; Karnan S; Ota A; Uemura H; De Velasco MA; Kura Y; Suzuki S; Ueda R; Nishino T; Hosokawa Y
    Oncol Rep; 2018 Nov; 40(5):2455-2466. PubMed ID: 30226608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Gene Editing by CRISPR-Cas9 of miR-21 and the Indirect Target MMP9 in Metastatic Prostate Cancer.
    Camargo JA; Viana NI; Pimenta R; Guimarães VR; Dos Santos GA; Candido P; Ghazarian V; Romão P; Silva IA; Birbrair A; Srougi M; Nahas WC; Leite KR; Trarbach EB; Reis ST
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated deletion of Interleukin-30 suppresses IGF1 and CXCL5 and boosts SOCS3 reducing prostate cancer growth and mortality.
    Sorrentino C; D'Antonio L; Ciummo SL; Fieni C; Landuzzi L; Ruzzi F; Vespa S; Lanuti P; Lotti LV; Lollini PL; Di Carlo E
    J Hematol Oncol; 2022 Oct; 15(1):145. PubMed ID: 36224639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis.
    Limberger T; Schlederer M; Trachtová K; Garces de Los Fayos Alonso I; Yang J; Högler S; Sternberg C; Bystry V; Oppelt J; Tichý B; Schmeidl M; Kodajova P; Jäger A; Neubauer HA; Oberhuber M; Schmalzbauer BS; Pospisilova S; Dolznig H; Wadsak W; Culig Z; Turner SD; Egger G; Lagger S; Kenner L
    Mol Cancer; 2022 Mar; 21(1):89. PubMed ID: 35354467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression.
    Kamdar S; Isserlin R; Van der Kwast T; Zlotta AR; Bader GD; Fleshner NE; Bapat B
    Clin Epigenetics; 2019 Mar; 11(1):54. PubMed ID: 30917865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun.
    Riedel M; Berthelsen MF; Cai H; Haldrup J; Borre M; Paludan SR; Hager H; Vendelbo MH; Wagner EF; Bakiri L; Thomsen MK
    Oncogene; 2021 Apr; 40(13):2437-2447. PubMed ID: 33674748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression.
    Crea F; Quagliata L; Michael A; Liu HH; Frumento P; Azad AA; Xue H; Pikor L; Watahiki A; Morant R; Eppenberger-Castori S; Wang Y; Parolia A; Lennox KA; Lam WL; Gleave M; Chi KN; Pandha H; Wang Y; Helgason CD
    Mol Oncol; 2016 May; 10(5):693-703. PubMed ID: 26809501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Analysis of Stk11/Lkb1 versus Pten Deficiency in Lung Adenocarcinoma Induced by CRISPR/Cas9.
    Berthelsen MF; Leknes SL; Riedel M; Pedersen MA; Joseph JV; Hager H; Vendelbo MH; Thomsen MK
    Cancers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model.
    Ye R; Pi M; Cox JV; Nishimoto SK; Quarles LD
    J Exp Clin Cancer Res; 2017 Jun; 36(1):90. PubMed ID: 28659174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stromal Gene Expression is Predictive for Metastatic Primary Prostate Cancer.
    Mo F; Lin D; Takhar M; Ramnarine VR; Dong X; Bell RH; Volik SV; Wang K; Xue H; Wang Y; Haegert A; Anderson S; Brahmbhatt S; Erho N; Wang X; Gout PW; Morris J; Karnes RJ; Den RB; Klein EA; Schaeffer EM; Ross A; Ren S; Sahinalp SC; Li Y; Xu X; Wang J; Wang J; Gleave ME; Davicioni E; Sun Y; Wang Y; Collins CC
    Eur Urol; 2018 Apr; 73(4):524-532. PubMed ID: 28330676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide CRISPR-Cas9 Screening and Identification of Potential Genes Promoting Prostate Cancer Growth and Metastasis.
    Wang W; Yuan D; Jiang K; Li R; Qu H; Jiang FN; Zhong WD; Sun F; Jia Z; Zhu J
    Curr Cancer Drug Targets; 2022; 23(1):71-86. PubMed ID: 35708078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.
    Zhen S; Takahashi Y; Narita S; Yang YC; Li X
    Oncotarget; 2017 Feb; 8(6):9375-9387. PubMed ID: 28030843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer.
    Tsujino T; Komura K; Inamoto T; Azuma H
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone methyltransferase KMT2C plays an oncogenic role in prostate cancer.
    Lian J; Xu C; Chen X; Huang S; Wu D
    J Cancer Res Clin Oncol; 2022 Jul; 148(7):1627-1640. PubMed ID: 35322299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination.
    Ideno N; Yamaguchi H; Okumura T; Huang J; Brun MJ; Ho ML; Suh J; Gupta S; Maitra A; Ghosh B
    Lab Invest; 2019 Jul; 99(8):1233-1244. PubMed ID: 30728464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients.
    Belluti S; Semeghini V; Rigillo G; Ronzio M; Benati D; Torricelli F; Reggiani Bonetti L; Carnevale G; Grisendi G; Ciarrocchi A; Dominici M; Recchia A; Dolfini D; Imbriano C
    J Exp Clin Cancer Res; 2021 Nov; 40(1):362. PubMed ID: 34782004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer.
    Lei H; Wang Z; Jiang D; Liu F; Liu M; Lei X; Yang Y; He B; Yan M; Huang H; Liu Q; Pang J
    Cell Death Dis; 2021 Jul; 12(8):740. PubMed ID: 34315855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in epigenetic regulator
    Zhu S; Xu N; Liang J; Zhao F; Wang Z; Ni Y; Dai J; Zhao J; Zhang X; Chen J; Sun G; Shen P; Zeng H
    Oncol Res; 2023; 31(4):605-614. PubMed ID: 37415738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 mediated genome editing.
    Wang X; Hayes JE; Xu X; Gao X; Mehta D; Lilja HG; Klein RJ
    Gene; 2021 Feb; 768():145265. PubMed ID: 33122083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.