These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38454002)

  • 1. Efficient retrosynthetic planning with MCTS exploration enhanced A
    Zhao D; Tu S; Xu L
    Commun Chem; 2024 Mar; 7(1):52. PubMed ID: 38454002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrosynthetic planning with experience-guided Monte Carlo tree search.
    Hong S; Zhuo HH; Jin K; Shao G; Zhou Z
    Commun Chem; 2023 Jun; 6(1):120. PubMed ID: 37301940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing search algorithms on the retrosynthesis problem.
    Roucairol M; Cazenave T
    Mol Inform; 2024 Jul; 43(7):e202300259. PubMed ID: 38864849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-learning Monte Carlo tree search algorithm for robot path planning.
    Li W; Liu Y; Ma Y; Xu K; Qiu J; Gan Z
    Front Neurorobot; 2023; 17():1039644. PubMed ID: 37483541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven approaches for identifying hyperparameters in multi-step retrosynthesis.
    Westerlund AM; Barge B; Mervin L; Genheden S
    Mol Inform; 2023 Nov; 42(11):e202300128. PubMed ID: 37679293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning.
    Wang X; Qian Y; Gao H; Coley CW; Mo Y; Barzilay R; Jensen KF
    Chem Sci; 2020 Sep; 11(40):10959-10972. PubMed ID: 34094345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic retrosynthetic route planning using template-free models.
    Lin K; Xu Y; Pei J; Lai L
    Chem Sci; 2020 Mar; 11(12):3355-3364. PubMed ID: 34122843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning chemical syntheses with deep neural networks and symbolic AI.
    Segler MHS; Preuss M; Waller MP
    Nature; 2018 Mar; 555(7698):604-610. PubMed ID: 29595767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating copolymer inverse design using monte carlo tree search.
    Patra TK; Loeffler TD; Sankaranarayanan SKRS
    Nanoscale; 2020 Dec; 12(46):23653-23662. PubMed ID: 33216077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOTiFS: Monte Carlo Tree Search Based Feature Selection.
    Chaudhry MU; Lee JH
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA inverse folding using Monte Carlo tree search.
    Yang X; Yoshizoe K; Taneda A; Tsuda K
    BMC Bioinformatics; 2017 Nov; 18(1):468. PubMed ID: 29110632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets.
    Chaudhry MU; Yasir M; Asghar MN; Lee JH
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning.
    Zhang B; Zhang X; Du W; Song Z; Zhang G; Zhang G; Wang Y; Chen X; Jiang J; Luo Y
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212711119. PubMed ID: 36191228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning.
    Genheden S; Thakkar A; Chadimová V; Reymond JL; Engkvist O; Bjerrum E
    J Cheminform; 2020 Nov; 12(1):70. PubMed ID: 33292482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenging Complexity with Simplicity: Rethinking the Role of Single-Step Models in Computer-Aided Synthesis Planning.
    Li J; Lin K; Pei J; Lai L
    J Chem Inf Model; 2024 Jul; 64(14):5470-5479. PubMed ID: 38940765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain.
    Thakkar A; Kogej T; Reymond JL; Engkvist O; Bjerrum EJ
    Chem Sci; 2020 Jan; 11(1):154-168. PubMed ID: 32110367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.