BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38454667)

  • 1. Finite ion size effects on I-V relations via Poisson-Nernst-Planck systems with two cations: A case study.
    Wang Y; Zhang M
    Math Biosci Eng; 2024 Jan; 21(2):1899-1916. PubMed ID: 38454667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations.
    Bates PW; Chen JN; Zhang MJ
    Math Biosci Eng; 2020 May; 17(4):3736-3766. PubMed ID: 32987553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical Analysis on Current-Voltage Relations via Classical Poisson-Nernst-Planck Systems with Nonzero Permanent Charges under Relaxed Electroneutrality Boundary Conditions.
    Wang Y; Zhang L; Zhang M
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between Cations via Classical Poisson-Nernst-Planck Models with Nonzero but Small Permanent Charges.
    Zhang M
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33810305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.
    Chaudhry JH; Comer J; Aksimentiev A; Olson LN
    Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations.
    Chao Z; Xie D
    J Comput Chem; 2021 Oct; 42(27):1929-1943. PubMed ID: 34382702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates.
    Lu B; Zhou YC
    Biophys J; 2011 May; 100(10):2475-85. PubMed ID: 21575582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Diffusion Coefficients and Permanent Charge on Reversal Potentials in Ionic Channels.
    Mofidi H; Eisenberg B; Liu W
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K^{+} channels.
    Liu X; Lu B
    Phys Rev E; 2017 Dec; 96(6-1):062416. PubMed ID: 29347452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
    Chen D; Lear J; Eisenberg B
    Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stabilized finite volume element method for solving Poisson-Nernst-Planck equations.
    Li J; Ying J
    Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3543. PubMed ID: 34716987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
    Nonner W; Eisenberg B
    Biophys J; 1998 Sep; 75(3):1287-305. PubMed ID: 9726931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.
    Lu B; Holst MJ; McCammon JA; Zhou YC
    J Comput Phys; 2010 Sep; 229(19):6979-6994. PubMed ID: 21709855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.
    Liu JL; Eisenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012711. PubMed ID: 26274207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the effects of small permanent charge on ionic flows: A higher order analysis.
    Mofidi H
    Math Biosci Eng; 2024 May; 21(5):6042-6076. PubMed ID: 38872569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.
    Xu Z; Ma M; Liu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013307. PubMed ID: 25122410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.