These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38454698)

  • 1. Integrative approach for predicting drug-target interactions via matrix factorization and broad learning systems.
    Xu W; Yang X; Guan Y; Cheng X; Wang Y
    Math Biosci Eng; 2024 Jan; 21(2):2608-2625. PubMed ID: 38454698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2022 Dec; 23(1):564. PubMed ID: 36581822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
    E Z; Qiao G; Wang G; Li Y
    Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple similarity drug-target interaction prediction with random walks and matrix factorization.
    Liu B; Papadopoulos D; Malliaros FD; Tsoumakas G; Papadopoulos AN
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph.
    Zhu Y; Ning C; Zhang N; Wang M; Zhang Y
    BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction.
    Jamali AA; Kusalik A; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):586-594. PubMed ID: 34914594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.
    Liu Y; Wu M; Miao C; Zhao P; Li XL
    PLoS Comput Biol; 2016 Feb; 12(2):e1004760. PubMed ID: 26872142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph regularized non-negative matrix factorization with [Formula: see text] norm regularization terms for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2023 Oct; 24(1):375. PubMed ID: 37789278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix factorization with denoising autoencoders for prediction of drug-target interactions.
    Sajadi SZ; Zare Chahooki MA; Tavakol M; Gharaghani S
    Mol Divers; 2023 Jun; 27(3):1333-1343. PubMed ID: 35871213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug-target interaction predication via multi-channel graph neural networks.
    Li Y; Qiao G; Wang K; Wang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting drug-protein interactions by preserving the graph information of multi source data.
    Wei J; Lu L; Shen T
    BMC Bioinformatics; 2024 Jan; 25(1):10. PubMed ID: 38177981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of drug-target interactions via neural tangent kernel extraction feature matrix factorization model.
    Wang Y; Zhang Y; Wang J; Xie F; Zheng D; Zou X; Guo M; Ding Y; Wan J; Han K
    Comput Biol Med; 2023 Jun; 159():106955. PubMed ID: 37094465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NRLMF
    Ban T; Ohue M; Akiyama Y
    Biochem Biophys Rep; 2019 Jul; 18():100615. PubMed ID: 30793050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IIFDTI: predicting drug-target interactions through interactive and independent features based on attention mechanism.
    Cheng Z; Zhao Q; Li Y; Wang J
    Bioinformatics; 2022 Sep; 38(17):4153-4161. PubMed ID: 35801934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method of Optimizing Weight Allocation in Data Integration Based on Q-Learning for Drug-Target Interaction Prediction.
    Sun J; Lu Y; Cui L; Fu Q; Wu H; Chen J
    Front Cell Dev Biol; 2022; 10():794413. PubMed ID: 35356288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction.
    Wang W; Yu M; Sun B; Li J; Liu D; Zhang H; Wang X; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):143-154. PubMed ID: 38051618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.