BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38454716)

  • 1. Lung adenocarcinoma identification based on hybrid feature selections and attentional convolutional neural networks.
    Li K; Wang Z; Zhou Y; Li S
    Math Biosci Eng; 2024 Jan; 21(2):2991-3015. PubMed ID: 38454716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing double-layered convolutional neural networks for efficient lung cancer classification through hyperparameter optimization and advanced image pre-processing techniques.
    Musthafa MM; Manimozhi I; Mahesh TR; Guluwadi S
    BMC Med Inform Decis Mak; 2024 May; 24(1):142. PubMed ID: 38802836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.
    Ma L; Fan S
    BMC Bioinformatics; 2017 Mar; 18(1):169. PubMed ID: 28292263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MLW-gcForest: a multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data.
    Dong Y; Yang W; Wang J; Zhao J; Qiang Y; Zhao Z; Kazihise NGF; Cui Y; Yang X; Liu S
    BMC Bioinformatics; 2019 Nov; 20(1):578. PubMed ID: 31726986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMAL-Net: Interpretable multi-task attention learning network for invasive lung adenocarcinoma screening in CT images.
    Wang J; Yuan C; Han C; Wen Y; Lu H; Liu C; She Y; Deng J; Li B; Qian D; Chen C
    Med Phys; 2021 Dec; 48(12):7913-7929. PubMed ID: 34674280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data.
    Xu D; Zhang J; Xu H; Zhang Y; Chen W; Gao R; Dehmer M
    BMC Genomics; 2020 Sep; 21(1):650. PubMed ID: 32962626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification.
    Atteia G; Alnashwan R; Hassan M
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-stage hybrid biomarker selection method based on ensemble filter and binary differential evolution incorporating binary African vultures optimization.
    Li W; Chi Y; Yu K; Xie W
    BMC Bioinformatics; 2023 Apr; 24(1):130. PubMed ID: 37016297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convolutional neural network model for survival prediction based on prognosis-related cascaded Wx feature selection.
    Yin Q; Chen W; Zhang C; Wei Z
    Lab Invest; 2022 Oct; 102(10):1064-1074. PubMed ID: 35810236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving lung cancer prognosis assessment by incorporating synthetic minority oversampling technique and score fusion method.
    Yan S; Qian W; Guan Y; Zheng B
    Med Phys; 2016 Jun; 43(6):2694-2703. PubMed ID: 27277016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
    Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y
    Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.
    Yu KH; Wang F; Berry GJ; Ré C; Altman RB; Snyder M; Kohane IS
    J Am Med Inform Assoc; 2020 May; 27(5):757-769. PubMed ID: 32364237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection.
    Sreejith S; Khanna Nehemiah H; Kannan A
    Comput Biol Med; 2020 Nov; 126():103991. PubMed ID: 32987205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant disease identification using contextual mask auto-encoder optimized with dynamic differential annealed optimization algorithm.
    Prasannakumar M; Latha K
    Microsc Res Tech; 2024 Mar; 87(3):484-494. PubMed ID: 37921010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network.
    Wang S; Wang T; Yang L; Yang DM; Fujimoto J; Yi F; Luo X; Yang Y; Yao B; Lin S; Moran C; Kalhor N; Weissferdt A; Minna J; Xie Y; Wistuba II; Mao Y; Xiao G
    EBioMedicine; 2019 Dec; 50():103-110. PubMed ID: 31767541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.
    Dabass M; Vashisth S; Vig R
    Comput Biol Med; 2022 Aug; 147():105680. PubMed ID: 35671654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data.
    López-García G; Jerez JM; Franco L; Veredas FJ
    PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.