These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38455733)
1. Comparative transcriptome and metabolome analysis revealed diversity in the response of resistant and susceptible rose ( Song J; Chen F; Lv B; Guo C; Yang J; Guo J; Huang L; Ning G; Yang Y; Xiang F Front Plant Sci; 2024; 15():1362287. PubMed ID: 38455733 [TBL] [Abstract][Full Text] [Related]
2. The Marssonina rosae effector MrSEP43 suppresses immunity in rose by targeting the orphan protein RcBROG. Yang Y; Qi Y; Su L; Yang S; Yi X; Luo L; Yu C; Cheng T; Wang J; Zhang Q; Pan H J Exp Bot; 2024 Aug; 75(16):4993-5007. PubMed ID: 38706346 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomics and metabolomics analyses of Rosa hybrida to identify heat stress response genes and metabolite pathways. Wang H; Xu W; Zhang X; Wang L; Jia S; Zhao S; Li W; Lu R; Ren A; Zhang S BMC Plant Biol; 2024 Sep; 24(1):874. PubMed ID: 39304829 [TBL] [Abstract][Full Text] [Related]
4. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371 [TBL] [Abstract][Full Text] [Related]
5. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation. Neu E; Domes HS; Menz I; Kaufmann H; Linde M; Debener T Plant Mol Biol; 2019 Mar; 99(4-5):299-316. PubMed ID: 30706286 [TBL] [Abstract][Full Text] [Related]
6. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea. Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome and metabolome analyses of Shatian pomelo ( Wu T; Liu K; Chen M; Jiang B; Gong Q; Zhong Y Front Plant Sci; 2022; 13():1022961. PubMed ID: 36407630 [TBL] [Abstract][Full Text] [Related]
8. Cotyledonary somatic embryo is one kind of intermediate material similar to callus in the process of in vitro tissue culture from Rosa hybrida 'John F. Kennedy'. Du L; Kang X; Guo H; Zhu Z; Wu R; Yuan M; Ding C BMC Genomics; 2024 Apr; 25(1):362. PubMed ID: 38609856 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome and Metabolome Profiling Reveal the Resistance Mechanisms of Rice against Brown Planthopper. Zhang Q; Li T; Gao M; Ye M; Lin M; Wu D; Guo J; Guan W; Wang J; Yang K; Zhu L; Cheng Y; Du B; He G Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35456901 [TBL] [Abstract][Full Text] [Related]
10. Temporal transcriptome and metabolome study revealed molecular mechanisms underlying rose responses to red spider mite infestation and predatory mite antagonism. Cai Y; Shi Z; Zhao P; Yang Y; Cui Y; Tian M; Wang J Front Plant Sci; 2024; 15():1436429. PubMed ID: 39224847 [TBL] [Abstract][Full Text] [Related]
11. Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut ( Lu L; Yang W; Dong Z; Tang L; Liu Y; Xie S; Yang Y Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834015 [TBL] [Abstract][Full Text] [Related]
12. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. Guo Z; Ma W; Cai L; Guo T; Liu H; Wang L; Liu J; Ma B; Feng Y; Liu C; Pan G BMC Plant Biol; 2022 Oct; 22(1):500. PubMed ID: 36284279 [TBL] [Abstract][Full Text] [Related]
13. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Yang C; Wu P; Yao X; Sheng Y; Zhang C; Lin P; Wang K Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008957 [No Abstract] [Full Text] [Related]
14. Comparative transcriptome analysis of resistant and susceptible wheat in response to Rhizoctonia cerealis. Geng X; Gao Z; Zhao L; Zhang S; Wu J; Yang Q; Liu S; Chen X BMC Plant Biol; 2022 May; 22(1):235. PubMed ID: 35534832 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Identification and Expression Analysis of the TIR-NBS-LRR Gene Family and Its Response to Fungal Disease in Rose ( Song J; Chen F; Lv B; Guo C; Yang J; Huang L; Guo J; Xiang F Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979118 [TBL] [Abstract][Full Text] [Related]
16. Microscopic and biochemical evidence of differentially virulent field isolates of Diplocarpon rosae causing black spot disease of roses. Gachomo EW; Kotchoni SO Plant Physiol Biochem; 2010; 48(2-3):167-75. PubMed ID: 20137960 [TBL] [Abstract][Full Text] [Related]
17. Genome-Wide Analysis of the WRKY Transcription Factor Family in Roses and Their Putative Role in Defence Signalling in the Rose-Blackspot Interaction. Domes HS; Debener T Plants (Basel); 2024 Apr; 13(8):. PubMed ID: 38674474 [TBL] [Abstract][Full Text] [Related]
18. Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Huang X; Huang X; Guo L; He L; Xiao D; Zhan J; Wang A; Liang R Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563613 [No Abstract] [Full Text] [Related]
19. Integrated Transcriptome and Metabolome Analysis Reveals the Molecular Mechanism of Rust Resistance in Resistant (Youkang) and Susceptive (Tengjiao) Han S; Xu X; Yuan H; Li S; Lin T; Liu Y; Li S; Zhu T Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834210 [TBL] [Abstract][Full Text] [Related]
20. Comparative RNA-seq analysis reveals a critical role for ethylene in rose ( Liu X; Fang P; Wang Z; Cao X; Yu Z; Chen X; Zhang Z Front Plant Sci; 2022; 13():1018427. PubMed ID: 36237514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]