These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38455941)

  • 1. Greedy knot selection algorithm for restricted cubic spline regression.
    Arnes JI; Hapfelmeier A; Horsch A; Braaten T
    Front Epidemiol; 2023; 3():1283705. PubMed ID: 38455941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling non-linear relationships in epidemiological data: The application and interpretation of spline models.
    Schuster NA; Rijnhart JJM; Twisk JWR; Heymans MW
    Front Epidemiol; 2022; 2():975380. PubMed ID: 38455295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A free-knot spline modeling framework for piecewise linear logistic regression in complex samples with body mass index and mortality as an example.
    Keith SW; Allison DB
    Front Nutr; 2014 Sep; 2014():00016. PubMed ID: 25610831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation dose response estimation with emphasis on low dose range using restricted cubic splines: application to all solid cancer mortality data, 1950-2003, in atomic bomb survivors.
    Nakashima E
    Health Phys; 2015 Jul; 109(1):15-24. PubMed ID: 26011495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized knot placement for B-splines in deformable image registration.
    Jacobson TJ; Murphy MJ
    Med Phys; 2011 Aug; 38(8):4579-82. PubMed ID: 21928630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of locations of knots for linear splines in random regression test-day models.
    Jamrozik J; Bohmanova J; Schaeffer LR
    J Anim Breed Genet; 2010 Apr; 127(2):87-92. PubMed ID: 20433515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival estimation through the cumulative hazard with monotone natural cubic splines using convex optimization-the HCNS approach.
    Bantis LE; Tsimikas JV; Georgiou SD
    Comput Methods Programs Biomed; 2020 Jul; 190():105357. PubMed ID: 32036203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using fractional polynomials and restricted cubic splines to model non-proportional hazards or time-varying covariate effects in the Cox regression model.
    Austin PC; Fang J; Lee DS
    Stat Med; 2022 Feb; 41(3):612-624. PubMed ID: 34806210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE): Phase 2.
    Brauer M; Brook JR; Christidis T; Chu Y; Crouse DL; Erickson A; Hystad P; Li C; Martin RV; Meng J; Pappin AJ; Pinault LL; Tjepkema M; van Donkelaar A; Weagle C; Weichenthal S; Burnett RT
    Res Rep Health Eff Inst; 2022 Jul; 2022(212):1-91. PubMed ID: 36224709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricted cubic splines for modelling periodic data.
    Lusa L; Ahlin Č
    PLoS One; 2020; 15(10):e0241364. PubMed ID: 33112926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.
    Bohmanova J; Miglior F; Jamrozik J; Misztal I; Sullivan PG
    J Dairy Sci; 2008 Sep; 91(9):3627-38. PubMed ID: 18765621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible B-spline model for multiple longitudinal biomarkers and survival.
    Brown ER; Ibrahim JG; DeGruttola V
    Biometrics; 2005 Mar; 61(1):64-73. PubMed ID: 15737079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The comparison of alternative smoothing methods for fitting non-linear exposure-response relationships with Cox models in a simulation study.
    Govindarajulu US; Malloy EJ; Ganguli B; Spiegelman D; Eisen EA
    Int J Biostat; 2009 Jan; 5(1):Article 2. PubMed ID: 20231865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating knots and their association in parallel bilinear spline growth curve models in the framework of individual measurement occasions.
    Liu J; Perera RA
    Psychol Methods; 2022 Oct; 27(5):703-729. PubMed ID: 33779197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.
    Grajeda LM; Ivanescu A; Saito M; Crainiceanu C; Jaganath D; Gilman RH; Crabtree JE; Kelleher D; Cabrera L; Cama V; Checkley W
    Emerg Themes Epidemiol; 2016; 13():1. PubMed ID: 26752996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free knot splines for logistic models and threshold selection.
    Bessaoud F; Daures JP; Molinari N
    Comput Methods Programs Biomed; 2005 Jan; 77(1):1-9. PubMed ID: 15639705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.
    Baldi F; Alencar MM; Albuquerque LG
    J Anim Breed Genet; 2010 Dec; 127(6):433-41. PubMed ID: 21077967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model selection in multivariate adaptive regressions splines (MARS) using alternative information criteria.
    Bekar Adiguzel M; Cengiz MA
    Heliyon; 2023 Sep; 9(9):e19964. PubMed ID: 37809827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of restricted cube spline in cox regression model].
    Wei Y; Zhou JH; Zhang ZW; Tan QY; Zhang MY; Li J; Shi XM; Lyu YB
    Zhonghua Yu Fang Yi Xue Za Zhi; 2020 Oct; 54(10):1169-1173. PubMed ID: 32842720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of optimal knot point and best geographic weighted on geographically weighted spline nonparametric regression model.
    Sifriyani ; Budiantara IN; Candra KP; Putri M
    MethodsX; 2024 Dec; 13():102802. PubMed ID: 39105092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.