These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38456247)

  • 1. Highly sensitive chemiluminescence sensors for the detection and differentiation of chemical warfare agents.
    Redy Keisar O; Pevzner A; Fridkin G; Shelef O; Shabat D; Ashkenazi N
    Anal Methods; 2024 Mar; 16(12):1736-1740. PubMed ID: 38456247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents.
    Lian X; Yan B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14869-14876. PubMed ID: 29620847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Array-based chemical warfare agent discrimination
    Zhang Q; Yang Y; Xia J; Zhang Y; Liu S; Yuan Z
    RSC Adv; 2022 Jun; 12(30):19246-19252. PubMed ID: 35865595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century.
    Kumar V; Kim H; Pandey B; James TD; Yoon J; Anslyn EV
    Chem Soc Rev; 2023 Jan; 52(2):663-704. PubMed ID: 36546880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Sensing of Chemical Warfare Agents.
    Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G
    Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blaptica dubia as sentinels for exposure to chemical warfare agents - a pilot study.
    Worek F; Seeger T; Neumaier K; Wille T; Thiermann H
    Toxicol Lett; 2016 Nov; 262():12-16. PubMed ID: 27639501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents.
    Bigley AN; Raushel FM
    Chem Biol Interact; 2019 Aug; 308():80-88. PubMed ID: 31100274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents.
    Numan A; Singh PS; Alam A; Khalid M; Li L; Singh S
    ACS Omega; 2022 Aug; 7(31):27079-27089. PubMed ID: 35967060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation.
    Kumar V
    Chem Commun (Camb); 2021 Apr; 57(28):3430-3444. PubMed ID: 33725077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novichoks - The A group of organophosphorus chemical warfare agents.
    Kloske M; Witkiewicz Z
    Chemosphere; 2019 Apr; 221():672-682. PubMed ID: 30677728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in sensing toxic nerve agents through DMMP model simulant using diverse nanomaterials-based chemical sensors.
    Saya L; Ratandeep ; Arya B; Rastogi K; Verma M; Rani S; Sahu PK; Singh MR; Singh WR; Hooda S
    Talanta; 2024 May; 272():125785. PubMed ID: 38394750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Colorimetric Detection of Novichok Agents with Hydrazone Chemosensors.
    Termeau L; Penlou S; Carella A
    ACS Sens; 2023 Apr; 8(4):1510-1517. PubMed ID: 37036422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides.
    Gori M; Thakur A; Sharma A; Flora SJS
    Top Curr Chem (Cham); 2021 Aug; 379(5):33. PubMed ID: 34346011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Identification of Seven Chemical Warfare Mimics Using a Colorimetric Array.
    Kangas MJ; Ernest A; Lukowicz R; Mora AV; Quossi A; Perez M; Kyes N; Holmes AE
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prediction of hydrolysis and biodegradation of organophosphorus-based chemical warfare agents (G-series and V-series) using toxicology in silico methods.
    Noga M; Michalska A; Jurowski K
    Ecotoxicol Environ Saf; 2024 Mar; 272():116018. PubMed ID: 38325275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent.
    Liang M; Fan K; Pan Y; Jiang H; Wang F; Yang D; Lu D; Feng J; Zhao J; Yang L; Yan X
    Anal Chem; 2013 Jan; 85(1):308-12. PubMed ID: 23153113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.
    Dennison GH; Johnston MR
    Chemistry; 2015 Apr; 21(17):6328-38. PubMed ID: 25649522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Ultrasensitive and Recyclable Dual-Channel Fluorescence Sensors for Chemical Warfare Agents Based on the State Dehybridization of Hybrid Locally Excited and Charge Transfer Materials.
    Li X; Lv Y; Chang S; Liu H; Mo W; Ma H; Zhou C; Zhang S; Yang B
    Anal Chem; 2019 Sep; 91(17):10927-10931. PubMed ID: 31305982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells.
    Hananya N; Green O; Blau R; Satchi-Fainaro R; Shabat D
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11793-11796. PubMed ID: 28749072
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Park JH; Song SG; Shin MH; Song C; Bae HY
    ACS Sens; 2022 Feb; 7(2):423-429. PubMed ID: 35119283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.