These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38456427)
1. Engineering Phase Separation in Niobate Glass through Ab Initio Molecular Dynamics for Enhanced Energy Storage Performance and Unprecedented Thermal Stability in Niobate-Based Glass Ceramics. Chen C; Wang T; Zhang S; Li B ACS Appl Mater Interfaces; 2024 Mar; 16(11):13961-13971. PubMed ID: 38456427 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Optimization of Energy Storage Density of PYN-Based Antiferroelectric Ceramics by Composition Design and Microstructure Engineering. Chen C; Qian J; Yang J; Li G; Lin J; Shi C; Ge G; Shen B; Zhai J Small; 2023 Sep; 19(37):e2302376. PubMed ID: 37140075 [TBL] [Abstract][Full Text] [Related]
3. Simultaneously enhanced energy density and discharge efficiency of (Na Wang Y; Chen Y; Zhao D; Wang H; Zheng Q; Fan G; He X; Lin D Dalton Trans; 2022 Sep; 51(36):13867-13877. PubMed ID: 36040115 [TBL] [Abstract][Full Text] [Related]
4. Achieving Superior Energy Storage Properties and Ultrafast Discharge Speed in Environment-Friendly Niobate-Based Glass Ceramics. Chen K; Bai H; Yan F; He X; Liu C; Xie S; Shen B; Zhai J ACS Appl Mater Interfaces; 2021 Jan; 13(3):4236-4243. PubMed ID: 33443995 [TBL] [Abstract][Full Text] [Related]
5. Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering. Gao Y; Song Z; Hu H; Mei J; Kang R; Zhu X; Yang B; Shao J; Chen Z; Li F; Zhang S; Lou X Nat Commun; 2024 Jul; 15(1):5869. PubMed ID: 38997263 [TBL] [Abstract][Full Text] [Related]
6. Boosting Energy Storage Performance of Glass Ceramics via Modulating Defect Formation During Crystallization. Shang F; Wei J; Xu J; Zhang H; Xia Y; Zhu G; Jiang K; Chen G; Ye Z; Xu H Adv Sci (Weinh); 2024 Feb; 11(7):e2307011. PubMed ID: 38063854 [TBL] [Abstract][Full Text] [Related]
7. Ultrahigh Energy Storage in (Ag,Sm)(Nb,Ta)O Zeng F; Zeng H; Zhang Y; Shen M; Hu Y; Gao S; Jiang S; He Y; Zhang Q ACS Appl Mater Interfaces; 2024 Sep; 16(38):51170-51181. PubMed ID: 39259942 [TBL] [Abstract][Full Text] [Related]
8. Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO Dai Z; Xie J; Liu W; Wang X; Zhang L; Zhou Z; Li J; Ren X ACS Appl Mater Interfaces; 2020 Jul; 12(27):30289-30296. PubMed ID: 32530604 [TBL] [Abstract][Full Text] [Related]
9. Realizing High Comprehensive Energy Storage and Ultrahigh Hardness in Lead-Free Ceramics. Xing J; Huang Y; Xu Q; Wu B; Zhang Q; Tan Z; Chen Q; Wu J; Zhu J ACS Appl Mater Interfaces; 2021 Jun; 13(24):28472-28483. PubMed ID: 34105933 [TBL] [Abstract][Full Text] [Related]
10. Simultaneously Realizing Superior Energy Storage Properties and Outstanding Charge-Discharge Performances in Tungsten Bronze-Based Ceramic for Capacitor Applications. Zhang X; Wang H; Bu X; Zheng P; Li L; Wen F; Bai W; Zhang J; Zheng L; Zhai J; Zhang Y Inorg Chem; 2021 May; 60(9):6559-6568. PubMed ID: 33861589 [TBL] [Abstract][Full Text] [Related]
11. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance. Zhao L; Liu Q; Gao J; Zhang S; Li JF Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628242 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Comprehensive Energy Storage Properties in Tungsten Bronze Sr Yang B; Zhang J; Lou X; Gao Y; Shi P; Yang Y; Yang M; Cui J; Wei L; Sun S ACS Appl Mater Interfaces; 2022 Aug; 14(30):34855-34866. PubMed ID: 35867986 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Energy Storage Performance in Lead-Free Bismuth Sodium Niobate-Based Tungsten Bronze Ceramics through Relaxor Tuning. Xu S; Shen S; Huang C; He Y; Chao X; Wu D; Liang P; Yang Z; Lu J; Wei L ACS Appl Mater Interfaces; 2023 Mar; 15(9):11642-11651. PubMed ID: 36847645 [TBL] [Abstract][Full Text] [Related]
14. High-Energy Storage Properties over a Broad Temperature Range in La-Modified BNT-Based Lead-Free Ceramics. Chu B; Hao J; Li P; Li Y; Li W; Zheng L; Zeng H ACS Appl Mater Interfaces; 2022 May; 14(17):19683-19696. PubMed ID: 35467826 [TBL] [Abstract][Full Text] [Related]
15. A Combined Optimization Strategy for Improvement of Comprehensive Energy Storage Performance in Sodium Niobate-Based Antiferroelectric Ceramics. Wang X; Wang X; Huan Y; Li C; Ouyang J; Wei T ACS Appl Mater Interfaces; 2022 Feb; 14(7):9330-9339. PubMed ID: 35156378 [TBL] [Abstract][Full Text] [Related]
16. Ultrahigh Energy Storage Density and High Efficiency in Lead-Free (Bi Ma J; Zhang D; Ying F; Li X; Li L; Guo S; Huan Y; Zhang J; Wang J; Zhang ST ACS Appl Mater Interfaces; 2022 May; 14(17):19704-19713. PubMed ID: 35442644 [TBL] [Abstract][Full Text] [Related]
17. Achieving Ultrahigh Energy Storage Performance for NaNbO Wei K; Duan J; Zhou X; Li G; Zhang D; Li H ACS Appl Mater Interfaces; 2023 Oct; 15(41):48354-48364. PubMed ID: 37791962 [TBL] [Abstract][Full Text] [Related]
18. Aliovalent Doping Engineering for A- and B-Sites with Multiple Regulatory Mechanisms: A Strategy to Improve Energy Storage Properties of Sr Zhao P; Fang Z; Zhang X; Chen J; Shen Y; Zhang X; An Q; Yang C; Gao X; Zhang S; Tang B ACS Appl Mater Interfaces; 2021 Jun; 13(21):24833-24855. PubMed ID: 34014637 [TBL] [Abstract][Full Text] [Related]
19. Phase and Band Structure Engineering via Linear Additive in NBT-ST for Excellent Energy Storage Performance with Superior Thermal Stability. Cao W; Lin R; Chen P; Li F; Ge B; Song D; Zhang J; Cheng Z; Wang C ACS Appl Mater Interfaces; 2022 Dec; 14(48):54051-54062. PubMed ID: 36413744 [TBL] [Abstract][Full Text] [Related]
20. Effect of the Na Benyounoussy S; Bih L; Muñoz F; Rubio-Marcos F; El Bouari A Heliyon; 2021 May; 7(5):e07113. PubMed ID: 34136689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]