These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38456528)

  • 1. Free-energy landscape and spinodals for the liquid-liquid transition of the TIP4P/2005 and TIP4P/Ice models of water.
    Sciortino F; Gartner TE; Debenedetti PG
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38456528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions.
    Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JL; Debenedetti PG; Anisimov MA; Caupin F
    J Chem Phys; 2017 Jan; 146(3):034502. PubMed ID: 28109212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions.
    Dhabal D; Sankaranarayanan SKRS; Molinero V
    J Phys Chem B; 2022 Dec; 126(47):9881-9892. PubMed ID: 36383428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water.
    Singh RS; Biddle JW; Debenedetti PG; Anisimov MA
    J Chem Phys; 2016 Apr; 144(14):144504. PubMed ID: 27083735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy calculations and unbiased molecular dynamics targeting the liquid-liquid transition in water no man's land.
    Jedrecy A; Saitta AM; Pietrucci F
    J Chem Phys; 2023 Jan; 158(1):014502. PubMed ID: 36610960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic picture of vitrification of water through complex specific heat and entropy: A journey through "no man's land".
    Saito S; Bagchi B
    J Chem Phys; 2019 Feb; 150(5):054502. PubMed ID: 30736680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water.
    Lupi L; Vázquez Ramírez B; Gallo P
    J Chem Phys; 2021 Aug; 155(5):054502. PubMed ID: 34364341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations.
    McMillin PJ; Alegrete M; Peric M; Luchko T
    J Phys Chem B; 2020 May; 124(19):3962-3972. PubMed ID: 32301326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model.
    González MA; Valeriani C; Caupin F; Abascal JL
    J Chem Phys; 2016 Aug; 145(5):054505. PubMed ID: 27497563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.
    Buhariwalla CR; Bowles RK; Saika-Voivod I; Sciortino F; Poole PH
    Eur Phys J E Soft Matter; 2015 May; 38(5):124. PubMed ID: 25985943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-diffusion and shear viscosity for the TIP4P/Ice water model.
    Baran Ł; Rżysko W; MacDowell LG
    J Chem Phys; 2023 Feb; 158(6):064503. PubMed ID: 36792509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the time required to freeze water.
    Espinosa JR; Navarro C; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2016 Dec; 145(21):211922. PubMed ID: 28799362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models.
    Brovchenko I; Geiger A; Oleinikova A
    J Chem Phys; 2005 Jul; 123(4):044515. PubMed ID: 16095377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.