These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38456554)
1. Biodegradable Honeycomb-Mimic Scaffolds Consisting of Nanofibrous Walls. Ko YG; Smith Callahan LA; Ma PX Macromol Biosci; 2024 Jun; 24(6):e2300540. PubMed ID: 38456554 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
4. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility. Chen S; He Z; Xu G; Xiao X J Biomater Sci Polym Ed; 2016 Jul; 27(10):1058-68. PubMed ID: 27095503 [TBL] [Abstract][Full Text] [Related]
7. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration. Junka R; Yu X Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395 [TBL] [Abstract][Full Text] [Related]
8. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure. Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751 [TBL] [Abstract][Full Text] [Related]
11. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Zhou G; Liu S; Ma Y; Xu W; Meng W; Lin X; Wang W; Wang S; Zhang J Int J Nanomedicine; 2017; 12():7577-7588. PubMed ID: 29075116 [TBL] [Abstract][Full Text] [Related]
12. The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. Wang X; Lou T; Zhao W; Song G; Li C; Cui G J Biomater Appl; 2016 May; 30(10):1545-51. PubMed ID: 26945811 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374 [TBL] [Abstract][Full Text] [Related]
14. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F; Mirzadeh H J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
16. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
17. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells. Ge M; Xue L; Nie T; Ma H; Zhang J J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555 [TBL] [Abstract][Full Text] [Related]
18. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
19. Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Luo H; Gan D; Gama M; Tu J; Yao F; Zhang Q; Ao H; Yang Z; Li J; Wan Y Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110416. PubMed ID: 31923960 [TBL] [Abstract][Full Text] [Related]
20. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]