These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38456842)
21. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. Yueh C; Rettenmaier J; Xia B; Hall DR; Alekseenko A; Porter KA; Barkovich K; Keseru G; Whitty A; Wells JA; Vajda S; Kozakov D J Med Chem; 2019 Jul; 62(14):6512-6524. PubMed ID: 31274316 [TBL] [Abstract][Full Text] [Related]
22. Ligand deconstruction: Why some fragment binding positions are conserved and others are not. Kozakov D; Hall DR; Jehle S; Luo L; Ochiana SO; Jones EV; Pollastri M; Allen KN; Whitty A; Vajda S Proc Natl Acad Sci U S A; 2015 May; 112(20):E2585-94. PubMed ID: 25918377 [TBL] [Abstract][Full Text] [Related]
23. DHODH Hot Spots: An Underexplored Source to Guide Drug Development Efforts. Froes TQ; Zapata LCC; Akamine JS; Castilho MS; Nonato MC Curr Top Med Chem; 2021; 21(23):2134-2154. PubMed ID: 34348625 [TBL] [Abstract][Full Text] [Related]
24. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. Yamaotsu N; Hirono S J Comput Aided Mol Des; 2018 Nov; 32(11):1229-1245. PubMed ID: 30196523 [TBL] [Abstract][Full Text] [Related]
26. Protein-protein interface analysis and hot spots identification for chemical ligand design. Chen J; Ma X; Yuan Y; Pei J; Lai L Curr Pharm Des; 2014; 20(8):1192-200. PubMed ID: 23713772 [TBL] [Abstract][Full Text] [Related]
27. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening. Zhou H; Cao H; Skolnick J J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022 [TBL] [Abstract][Full Text] [Related]
28. Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth. Lal Gupta P; Carlson HA J Chem Theory Comput; 2022 Jun; 18(6):3829-3844. PubMed ID: 35533286 [TBL] [Abstract][Full Text] [Related]
29. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Wang X; Shen Y; Wang S; Li S; Zhang W; Liu X; Lai L; Pei J; Li H Nucleic Acids Res; 2017 Jul; 45(W1):W356-W360. PubMed ID: 28472422 [TBL] [Abstract][Full Text] [Related]
30. Mapping of Protein Binding Sites using clustering algorithms - Development of a pharmacophore based drug discovery tool. Braun J; Fayne D J Mol Graph Model; 2022 Sep; 115():108228. PubMed ID: 35667141 [TBL] [Abstract][Full Text] [Related]
31. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. Loving K; Salam NK; Sherman W J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721 [TBL] [Abstract][Full Text] [Related]
32. Conservation of Hot Spots and Ligand Binding Sites in Protein Models by AlphaFold2. Bekar-Cesaretli AA; Khan O; Nguyen T; Kozakov D; Joseph-Mccarthy D; Vajda S J Chem Inf Model; 2024 Feb; 64(3):960-973. PubMed ID: 38253327 [TBL] [Abstract][Full Text] [Related]
33. Pharmacophore Mapping Combined with dbCICA Reveal New Structural Features for the Development of Novel Ligands Targeting α4β2 and α7 Nicotinic Acetylcholine Receptors. Batista VS; Gonçalves AM; Nascimento-Júnior NM Molecules; 2022 Nov; 27(23):. PubMed ID: 36500328 [TBL] [Abstract][Full Text] [Related]
34. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242 [TBL] [Abstract][Full Text] [Related]
35. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Xu Y; Wang S; Hu Q; Gao S; Ma X; Zhang W; Shen Y; Chen F; Lai L; Pei J Nucleic Acids Res; 2018 Jul; 46(W1):W374-W379. PubMed ID: 29750256 [TBL] [Abstract][Full Text] [Related]
36. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs. Giangreco I; Cosgrove DA; Packer MJ J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904 [TBL] [Abstract][Full Text] [Related]
37. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores. Barillari C; Marcou G; Rognan D J Chem Inf Model; 2008 Jul; 48(7):1396-410. PubMed ID: 18570371 [TBL] [Abstract][Full Text] [Related]
38. ACFIS: a web server for fragment-based drug discovery. Hao GF; Jiang W; Ye YN; Wu FX; Zhu XL; Guo FB; Yang GF Nucleic Acids Res; 2016 Jul; 44(W1):W550-6. PubMed ID: 27150808 [TBL] [Abstract][Full Text] [Related]
39. PharmaCore: The Automatic Generation of 3D Structure-Based Pharmacophore Models from Protein/Ligand Complexes. De Vita S; Colarusso E; Chini MG; Bifulco G; Lauro G J Chem Inf Model; 2024 May; 64(10):4263-4276. PubMed ID: 38728062 [TBL] [Abstract][Full Text] [Related]
40. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces. Bohnuud T; Kozakov D; Vajda S PLoS Comput Biol; 2014 Oct; 10(10):e1003872. PubMed ID: 25275445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]