BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38456842)

  • 21. Structural conservation of druggable hot spots in protein-protein interfaces.
    Kozakov D; Hall DR; Chuang GY; Cencic R; Brenke R; Grove LE; Beglov D; Pelletier J; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13528-33. PubMed ID: 21808046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases.
    Yueh C; Rettenmaier J; Xia B; Hall DR; Alekseenko A; Porter KA; Barkovich K; Keseru G; Whitty A; Wells JA; Vajda S; Kozakov D
    J Med Chem; 2019 Jul; 62(14):6512-6524. PubMed ID: 31274316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand deconstruction: Why some fragment binding positions are conserved and others are not.
    Kozakov D; Hall DR; Jehle S; Luo L; Ochiana SO; Jones EV; Pollastri M; Allen KN; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2585-94. PubMed ID: 25918377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DHODH Hot Spots: An Underexplored Source to Guide Drug Development Efforts.
    Froes TQ; Zapata LCC; Akamine JS; Castilho MS; Nonato MC
    Curr Top Med Chem; 2021; 21(23):2134-2154. PubMed ID: 34348625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery.
    Yamaotsu N; Hirono S
    J Comput Aided Mol Des; 2018 Nov; 32(11):1229-1245. PubMed ID: 30196523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein-protein interface analysis and hot spots identification for chemical ligand design.
    Chen J; Ma X; Yuan Y; Pei J; Lai L
    Curr Pharm Des; 2014; 20(8):1192-200. PubMed ID: 23713772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth.
    Lal Gupta P; Carlson HA
    J Chem Theory Comput; 2022 Jun; 18(6):3829-3844. PubMed ID: 35533286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.
    Wang X; Shen Y; Wang S; Li S; Zhang W; Liu X; Lai L; Pei J; Li H
    Nucleic Acids Res; 2017 Jul; 45(W1):W356-W360. PubMed ID: 28472422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping of Protein Binding Sites using clustering algorithms - Development of a pharmacophore based drug discovery tool.
    Braun J; Fayne D
    J Mol Graph Model; 2022 Sep; 115():108228. PubMed ID: 35667141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation.
    Loving K; Salam NK; Sherman W
    J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conservation of Hot Spots and Ligand Binding Sites in Protein Models by AlphaFold2.
    Bekar-Cesaretli AA; Khan O; Nguyen T; Kozakov D; Joseph-Mccarthy D; Vajda S
    J Chem Inf Model; 2024 Feb; 64(3):960-973. PubMed ID: 38253327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacophore Mapping Combined with dbCICA Reveal New Structural Features for the Development of Novel Ligands Targeting α4β2 and α7 Nicotinic Acetylcholine Receptors.
    Batista VS; Gonçalves AM; Nascimento-Júnior NM
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots).
    MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.
    Xu Y; Wang S; Hu Q; Gao S; Ma X; Zhang W; Shen Y; Chen F; Lai L; Pei J
    Nucleic Acids Res; 2018 Jul; 46(W1):W374-W379. PubMed ID: 29750256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores.
    Barillari C; Marcou G; Rognan D
    J Chem Inf Model; 2008 Jul; 48(7):1396-410. PubMed ID: 18570371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ACFIS: a web server for fragment-based drug discovery.
    Hao GF; Jiang W; Ye YN; Wu FX; Zhu XL; Guo FB; Yang GF
    Nucleic Acids Res; 2016 Jul; 44(W1):W550-6. PubMed ID: 27150808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PharmaCore: The Automatic Generation of 3D Structure-Based Pharmacophore Models from Protein/Ligand Complexes.
    De Vita S; Colarusso E; Chini MG; Bifulco G; Lauro G
    J Chem Inf Model; 2024 May; 64(10):4263-4276. PubMed ID: 38728062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
    Bohnuud T; Kozakov D; Vajda S
    PLoS Comput Biol; 2014 Oct; 10(10):e1003872. PubMed ID: 25275445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.