These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 38456984)
1. Can rare earth elements be recovered from abandoned mine tailings by means of electrokinetic-assisted phytoextraction? Medina-Díaz HL; López-Bellido FJ; Alonso-Azcárate J; Fernández-Morales FJ; Rodríguez L Environ Sci Pollut Res Int; 2024 Apr; 31(18):26747-26759. PubMed ID: 38456984 [TBL] [Abstract][Full Text] [Related]
2. A new hyperaccumulator plant (Spergularia rubra) for the decontamination of mine tailings through electrokinetic-assisted phytoextraction. Medina-Díaz HL; López-Bellido FJ; Alonso-Azcárate J; Fernández-Morales FJ; Rodríguez L Sci Total Environ; 2024 Feb; 912():169543. PubMed ID: 38145688 [TBL] [Abstract][Full Text] [Related]
3. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China. Guo MN; Zhong X; Liu WS; Wang GB; Chao YQ; Huot H; Qiu RL; Morel JL; Watteau F; Séré G; Tang YT Sci Total Environ; 2022 Jul; 828():154361. PubMed ID: 35288140 [TBL] [Abstract][Full Text] [Related]
4. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Liu WS; Guo MN; Liu C; Yuan M; Chen XT; Huot H; Zhao CM; Tang YT; Morel JL; Qiu RL Chemosphere; 2019 Feb; 216():75-83. PubMed ID: 30359919 [TBL] [Abstract][Full Text] [Related]
5. Hyperaccumulator extracts promoting the phytoremediation of rare earth elements (REEs) by Phytolacca americana: Role of active microbial community in rhizosphere hotspots. Yan S; Xu S; Lei S; Gao Y; Chen K; Shi X; Guo Y; Bilyera N; Yuan M; Yao H Environ Res; 2024 Jul; 252(Pt 3):118939. PubMed ID: 38621629 [TBL] [Abstract][Full Text] [Related]
6. The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements. Wei Z; Hao Z; Li X; Guan Z; Cai Y; Liao X Sci Total Environ; 2019 Jun; 670():950-960. PubMed ID: 30921727 [TBL] [Abstract][Full Text] [Related]
7. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. Rabbani M; Taqi Rabbani M; Muthoni F; Sun Y; Vahidi E Bioresour Technol; 2024 Jun; 401():130751. PubMed ID: 38685517 [TBL] [Abstract][Full Text] [Related]
8. Phytoextraction and recovery of rare earth elements using willow (Salix spp.). Mohsin M; Salam MMA; Nawrot N; Kaipiainen E; Lane DJ; Wojciechowska E; Kinnunen N; Heimonen M; Tervahauta A; Peräniemi S; Sippula O; Pappinen A; Kuittinen S Sci Total Environ; 2022 Feb; 809():152209. PubMed ID: 34883169 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of metal-contaminated rare-earth mining sites using Paspalumconjugatum. Zhang L; Zhang P; Yoza B; Liu W; Liang H Chemosphere; 2020 Nov; 259():127280. PubMed ID: 32650174 [TBL] [Abstract][Full Text] [Related]
10. Ecological Risk Assessment of Neodymium and Yttrium on Rare Earth Element Mine Sites in Ganzhou, China. Zhao CM; Shi X; Xie SQ; Liu WS; He EK; Tang YT; Qiu RL Bull Environ Contam Toxicol; 2019 Oct; 103(4):565-570. PubMed ID: 31410500 [TBL] [Abstract][Full Text] [Related]
11. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Mleczek P; Borowiak K; Budka A; Niedzielski P Environ Sci Pollut Res Int; 2018 Aug; 25(24):23695-23711. PubMed ID: 29872986 [TBL] [Abstract][Full Text] [Related]
12. Phytomining of rare earth elements - A review. Dinh T; Dobo Z; Kovacs H Chemosphere; 2022 Jun; 297():134259. PubMed ID: 35271907 [TBL] [Abstract][Full Text] [Related]
13. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Yuan M; Liu C; Liu WS; Guo MN; Morel JL; Huot H; Yu HJ; Tang YT; Qiu RL Int J Phytoremediation; 2018 Apr; 20(5):415-423. PubMed ID: 29608375 [TBL] [Abstract][Full Text] [Related]
14. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings. Chu Z; Wang X; Wang Y; Liu G; Dong Z; Lu X; Chen G; Zha F Environ Monit Assess; 2017 Dec; 190(1):36. PubMed ID: 29270684 [TBL] [Abstract][Full Text] [Related]
15. Transfer of La, Ce, Sm and Yb to alfalfa and ryegrass from spiked soil and the role of Funneliformis mosseae. Hu R; Beguiristain T; De Junet A; Leyval C Mycorrhiza; 2022 Mar; 32(2):165-175. PubMed ID: 35253102 [TBL] [Abstract][Full Text] [Related]
16. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China. Wang L; Liang T Environ Sci Pollut Res Int; 2016 Jun; 23(11):11330-11338. PubMed ID: 26931660 [TBL] [Abstract][Full Text] [Related]
17. Rare Earth Element Accumulation and Fractionation in a Lake Ecosystem Impacted by Past Uranium Mining. Dang DH; Wang W; Evans RD Arch Environ Contam Toxicol; 2021 Nov; 81(4):589-599. PubMed ID: 34219186 [TBL] [Abstract][Full Text] [Related]
18. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Siyar R; Doulati Ardejani F; Farahbakhsh M; Norouzi P; Yavarzadeh M; Maghsoudy S Chemosphere; 2020 May; 246():125802. PubMed ID: 31927377 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the removal of atrazine from soils by electrokinetic-assisted phytoremediation using ryegrass (Lolium perenne L.). Sánchez V; Francisco ; López-Bellido J; Rodrigo MA; Rodríguez L Chemosphere; 2019 Oct; 232():204-212. PubMed ID: 31154181 [TBL] [Abstract][Full Text] [Related]
20. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area. Khan AM; Yusoff I; Bakar NKA; Bakar AFA; Alias Y Environ Sci Pollut Res Int; 2016 Dec; 23(24):25039-25055. PubMed ID: 27677993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]