These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38457108)

  • 1. Identifying Protein Phosphorylation Site-Disease Associations Based on Multi-Similarity Fusion and Negative Sample Selection by Convolutional Neural Network.
    Deng Q; Zhang J; Liu J; Liu Y; Dai Z; Zou X; Li Z
    Interdiscip Sci; 2024 Sep; 16(3):649-664. PubMed ID: 38457108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting potential microbe-disease associations based on dual branch graph convolutional network.
    Chen J; Zhu Y; Yuan Q
    J Cell Mol Med; 2024 Aug; 28(15):e18571. PubMed ID: 39086148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network.
    Liu J; Peng D; Li J; Dai Z; Zou X; Li Z
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepPRMS: advanced deep learning model to predict protein arginine methylation sites.
    Khandelwal M; Kumar Rout R
    Brief Funct Genomics; 2024 Jul; 23(4):452-463. PubMed ID: 38267081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning.
    Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.
    Li J; Liu T; Wang J; Li Q; Ning C; Yang Y
    Artif Intell Med; 2021 Aug; 118():102115. PubMed ID: 34412838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous graph neural network for lncRNA-disease association prediction.
    Shi H; Zhang X; Tang L; Liu L
    Sci Rep; 2022 Oct; 12(1):17519. PubMed ID: 36266433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSCNE:Predict miRNA-Disease Associations Using Neural Network Based on Multi-Source Biological Information.
    Han G; Kuang Z; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2926-2937. PubMed ID: 34410928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism.
    Wang S; Qiao J; Feng S
    Sci Rep; 2024 Mar; 14(1):5185. PubMed ID: 38431702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural deep network embedding model for predicting associations between miRNA and disease based on molecular association network.
    Li HY; Chen HY; Wang L; Song SJ; You ZH; Yan X; Yu JQ
    Sci Rep; 2021 Jun; 11(1):12640. PubMed ID: 34135401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.