These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38457289)

  • 1. Telo boxes within the AGAMOUS second intron recruit histone 3 lysine 27 methylation to increase petal number in rose (Rosa chinensis) in response to low temperatures.
    Lu J; Wang W; Fan C; Sun J; Yuan G; Guo Y; Yu X; Chang Y; Liu J; Wang C
    Plant J; 2024 Jun; 118(5):1486-1499. PubMed ID: 38457289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida).
    Ma N; Chen W; Fan T; Tian Y; Zhang S; Zeng D; Li Y
    BMC Plant Biol; 2015 Oct; 15():237. PubMed ID: 26438149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses.
    Dubois A; Raymond O; Maene M; Baudino S; Langlade NB; Boltz V; Vergne P; Bendahmane M
    PLoS One; 2010 Feb; 5(2):e9288. PubMed ID: 20174587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.
    Han Y; Wan H; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Sci Rep; 2017 Feb; 7():43382. PubMed ID: 28225056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses.
    François L; Verdenaud M; Fu X; Ruleman D; Dubois A; Vandenbussche M; Bendahmane A; Raymond O; Just J; Bendahmane M
    Sci Rep; 2018 Aug; 8(1):12912. PubMed ID: 30150746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis.
    Dong Y; Lu J; Liu J; Jalal A; Wang C
    Plant Mol Biol; 2020 Mar; 102(4-5):417-430. PubMed ID: 31898146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.
    Lü P; Zhang C; Liu J; Liu X; Jiang G; Jiang X; Khan MA; Wang L; Hong B; Gao J
    Plant J; 2014 May; 78(4):578-90. PubMed ID: 24589134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida).
    Cheng C; Yu Q; Wang Y; Wang H; Dong Y; Ji Y; Zhou X; Li Y; Jiang CZ; Gan SS; Zhao L; Fei Z; Gao J; Ma N
    Plant Cell; 2021 May; 33(4):1229-1251. PubMed ID: 33693903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2.
    Luo J; Ma N; Pei H; Chen J; Li J; Gao J
    J Exp Bot; 2013 Nov; 64(16):5075-84. PubMed ID: 24014864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'.
    Yan H; Zhang H; Chen M; Jian H; Baudino S; Caissard JC; Bendahmane M; Li S; Zhang T; Zhou N; Qiu X; Wang Q; Tang K
    Gene; 2014 Apr; 540(1):96-103. PubMed ID: 24530310
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Han Y; Tang A; Yu J; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31330828
    [No Abstract]   [Full Text] [Related]  

  • 12. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals.
    Jiang X; Zhang C; Lü P; Jiang G; Liu X; Dai F; Gao J
    Plant Biotechnol J; 2014 Jan; 12(1):38-48. PubMed ID: 24011328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription Factor
    Xu Y; Xing Y; Wei T; Wang P; Liang Y; Xu M; Ding H; Wang J; Feng L
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics and genomics of flower initiation and development in roses.
    Bendahmane M; Dubois A; Raymond O; Bris ML
    J Exp Bot; 2013 Feb; 64(4):847-57. PubMed ID: 23364936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression.
    Tanaka Y; Oshima Y; Yamamura T; Sugiyama M; Mitsuda N; Ohtsubo N; Ohme-Takagi M; Terakawa T
    Sci Rep; 2013; 3():2641. PubMed ID: 24026510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion.
    Ma N; Xue J; Li Y; Liu X; Dai F; Jia W; Luo Y; Gao J
    Plant Physiol; 2008 Oct; 148(2):894-907. PubMed ID: 18715962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fading beauty: The protein degradation mechanism behind rose petal senescence.
    Liu P
    Plant Cell; 2024 May; 36(5):1578-1579. PubMed ID: 38442313
    [No Abstract]   [Full Text] [Related]  

  • 18. The transcription factor RhMYB17 regulates the homeotic transformation of floral organs in rose (Rosa hybrida) under cold stress.
    Yang T; Wang Y; Li Y; Liang S; Yang Y; Huang Z; Li Y; Gao J; Ma N; Zhou X
    J Exp Bot; 2024 May; 75(10):2965-2981. PubMed ID: 38452221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals.
    Dai F; Zhang C; Jiang X; Kang M; Yin X; Lü P; Zhang X; Zheng Y; Gao J
    Plant Physiol; 2012 Dec; 160(4):2064-82. PubMed ID: 23093360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose.
    Tripathi SK; Singh AP; Sane AP; Nath P
    J Exp Bot; 2009; 60(7):2035-44. PubMed ID: 19346241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.