These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38457716)

  • 1. Scheme for Quantum-Logic Based Transfer of Accuracy in Polarizability Measurement for Trapped Ions Using a Moving Optical Lattice.
    Wolf F
    Phys Rev Lett; 2024 Feb; 132(8):083202. PubMed ID: 38457716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-accuracy measurement of atomic polarizability in an optical lattice clock.
    Sherman JA; Lemke ND; Hinkley N; Pizzocaro M; Fox RW; Ludlow AD; Oates CW
    Phys Rev Lett; 2012 Apr; 108(15):153002. PubMed ID: 22587248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift.
    Golovizin A; Fedorova E; Tregubov D; Sukachev D; Khabarova K; Sorokin V; Kolachevsky N
    Nat Commun; 2019 Apr; 10(1):1724. PubMed ID: 30979896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the Spin-Dipolar Part of the Tensor Polarizability of ^{87}Rb.
    Dallal Y; Ozeri R
    Phys Rev Lett; 2015 Oct; 115(18):183001. PubMed ID: 26565464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Algorithmic Readout in Multi-Ion Clocks.
    Schulte M; Lörch N; Leroux ID; Schmidt PO; Hammerer K
    Phys Rev Lett; 2016 Jan; 116(1):013002. PubMed ID: 26799016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blackbody radiation shift assessment for a lutetium ion clock.
    Arnold KJ; Kaewuam R; Roy A; Tan TR; Barrett MD
    Nat Commun; 2018 Apr; 9(1):1650. PubMed ID: 29695720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared dynamic polarizability of HD+ rovibrational states.
    Koelemeij JC
    Phys Chem Chem Phys; 2011 Nov; 13(42):18844-51. PubMed ID: 21755077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}.
    Brewer SM; Chen JS; Hankin AM; Clements ER; Chou CW; Wineland DJ; Hume DB; Leibrandt DR
    Phys Rev Lett; 2019 Jul; 123(3):033201. PubMed ID: 31386450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of a
    Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X
    Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect.
    Dubé P; Madej AA; Tibbo M; Bernard JE
    Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An elementary quantum network of entangled optical atomic clocks.
    Nichol BC; Srinivas R; Nadlinger DP; Drmota P; Main D; Araneda G; Ballance CJ; Lucas DM
    Nature; 2022 Sep; 609(7928):689-694. PubMed ID: 36071166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty.
    Nicholson TL; Campbell SL; Hutson RB; Marti GE; Bloom BJ; McNally RL; Zhang W; Barrett MD; Safronova MS; Strouse GF; Tew WL; Ye J
    Nat Commun; 2015 Apr; 6():6896. PubMed ID: 25898253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stark shift of the Cs clock transition frequency: a new experimental approach.
    Robyr JL; Knowles P; Weis A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 88Sr+ 445-THz single-ion reference at the 10(-17) level via control and cancellation of systematic uncertainties and its measurement against the SI second.
    Madej AA; Dubé P; Zhou Z; Bernard JE; Gertsvolf M
    Phys Rev Lett; 2012 Nov; 109(20):203002. PubMed ID: 23215481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopy using quantum logic.
    Schmidt PO; Rosenband T; Langer C; Itano WM; Bergquist JC; Wineland DJ
    Science; 2005 Jul; 309(5735):749-52. PubMed ID: 16051790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blackbody radiation shifts in optical atomic clocks.
    Safronova M; Kozlov M; Clark C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Quantum Logic Spectroscopy.
    Cui K; Valencia J; Boyce KT; Clements ER; Leibrandt DR; Hume DB
    Phys Rev Lett; 2022 Nov; 129(19):193603. PubMed ID: 36399738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.