BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38457841)

  • 1. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38457841
    [No Abstract]   [Full Text] [Related]  

  • 2. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    medRxiv; 2023 Dec; ():. PubMed ID: 37546858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of ganglion axon pathways accounts for percepts elicited by retinal implants.
    Beyeler M; Nanduri D; Weiland JD; Rokem A; Boynton GM; Fine I
    Sci Rep; 2019 Jun; 9(1):9199. PubMed ID: 31235711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only.
    Christie B; Sadeghi R; Kartha A; Caspi A; Tenore FV; Klatzky RL; Dagnelie G; Billings S
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35613043
    [No Abstract]   [Full Text] [Related]  

  • 5. Long-term Repeatability and Reproducibility of Phosphene Characteristics in Chronically Implanted Argus II Retinal Prosthesis Subjects.
    Luo YH; Zhong JJ; Clemo M; da Cruz L
    Am J Ophthalmol; 2016 Oct; 170():100-109. PubMed ID: 27491695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized single pulse stimulation strategy for retinal implants.
    Savage CO; Grayden DB; Meffin H; Burkitt AN
    J Neural Eng; 2013 Feb; 10(1):016003. PubMed ID: 23220887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 8. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal prosthesis phosphene shape analysis.
    Nanduri D; Humayun MS; Greenberg RJ; McMahon MJ; Weiland JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1785-8. PubMed ID: 19163027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing stimulus protocols in retinal-prosthesis patients.
    Gonzalez-Calle A; Weiland JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1170-1173. PubMed ID: 29060083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically elicited visual evoked potentials in Argus II retinal implant wearers.
    Stronks HC; Barry MP; Dagnelie G
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3891-901. PubMed ID: 23611993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific computational models of retinal prostheses.
    Kish KE; Yuan A; Weiland JD
    Sci Rep; 2023 Dec; 13(1):22271. PubMed ID: 38097732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Optimization of Retinal Ganglion Cell Spatial Activity in Response to Epiretinal Stimulation.
    Haji Ghaffari D; Akwaboah AD; Mirzakhalili E; Weiland JD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2733-2741. PubMed ID: 34941514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Computational Model of Phosphene Appearance for Epiretinal Prostheses.
    Granley J; Beyeler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4477-4481. PubMed ID: 34892213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.