BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38457841)

  • 21. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject.
    Niketeghad S; Muralidharan A; Patel U; Dorn JD; Bonelli L; Greenberg RJ; Pouratian N
    J Neurosurg; 2019 May; 132(6):2000-2007. PubMed ID: 31151104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinal prosthetic vision simulation: temporal aspects.
    Avraham D; Jung JH; Yitzhaky Y; Peli E
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359062
    [No Abstract]   [Full Text] [Related]  

  • 23. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users.
    Titchener SA; Goossens J; Kvansakul J; Nayagam DAX; Kolic M; Baglin EK; Ayton LN; Abbott CJ; Luu CD; Barnes N; Kentler WG; Shivdasani MN; Allen PJ; Petoe MA
    Transl Vis Sci Technol; 2023 Mar; 12(3):20. PubMed ID: 36943168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual perception elicited by electrical stimulation of retina in blind humans.
    Humayun MS; de Juan E; Dagnelie G; Greenberg RJ; Propst RH; Phillips DH
    Arch Ophthalmol; 1996 Jan; 114(1):40-6. PubMed ID: 8540849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation.
    Evans ID; Palmisano S; Croft RJ
    Bioelectromagnetics; 2021 Feb; 42(2):146-158. PubMed ID: 33440463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embracing the irregular: a patient-specific image processing strategy for visual prostheses.
    Kiral-Kornek FI; Savage CO; O'Sullivan-Greene E; Burkitt AN; Grayden DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3563-6. PubMed ID: 24110499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS.
    Kvašňák E; Orendáčová M; Vránová J
    Physiol Res; 2022 Aug; 71(4):561-571. PubMed ID: 35770470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PVGAN: a generative adversarial network for object simplification in prosthetic vision.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35981530
    [No Abstract]   [Full Text] [Related]  

  • 30. The Appearance of Phosphenes Elicited Using a Suprachoroidal Retinal Prosthesis.
    Sinclair NC; Shivdasani MN; Perera T; Gillespie LN; McDermott HJ; Ayton LN; Blamey PJ;
    Invest Ophthalmol Vis Sci; 2016 Sep; 57(11):4948-4961. PubMed ID: 27654422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patient-specific computational models of retinal prostheses.
    Kish KE; Yuan A; Weiland JD
    Res Sq; 2023 Aug; ():. PubMed ID: 37577674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatially patterned bi-electrode epiretinal stimulation for axon avoidance at cellular resolution.
    Vilkhu RS; Madugula SS; Grosberg LE; Gogliettino AR; Hottowy P; Dabrowski W; Sher A; Litke AM; Mitra S; Chichilnisky EJ
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34710857
    [No Abstract]   [Full Text] [Related]  

  • 33. Percepts evoked by multi-electrode stimulation of human visual cortex.
    Bosking WH; Oswalt DN; Foster BL; Sun P; Beauchamp MS; Yoshor D
    Brain Stimul; 2022; 15(5):1163-1177. PubMed ID: 35985472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of waveform asymmetry on perception with epiretinal prostheses.
    Haji Ghaffari D; Finn KE; Jeganathan VSE; Patel U; Wuyyuru V; Roy A; Weiland JD
    J Neural Eng; 2020 Jul; 17(4):045009. PubMed ID: 32590371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa.
    Fujikado T; Morimoto T; Kanda H; Kusaka S; Nakauchi K; Ozawa M; Matsushita K; Sakaguchi H; Ikuno Y; Kamei M; Tano Y
    Graefes Arch Clin Exp Ophthalmol; 2007 Oct; 245(10):1411-9. PubMed ID: 17342502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual cortical prosthesis: an electrical perspective.
    Pio-Lopez L; Poulkouras R; Depannemaecker D
    J Med Eng Technol; 2021 Jul; 45(5):394-407. PubMed ID: 33843427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ten-Year Follow-up of a Blind Patient Chronically Implanted with Epiretinal Prosthesis Argus I.
    Yue L; Falabella P; Christopher P; Wuyyuru V; Dorn J; Schor P; Greenberg RJ; Weiland JD; Humayun MS
    Ophthalmology; 2015 Dec; 122(12):2545-52.e1. PubMed ID: 26386850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural activity shaping utilizing a partitioned target pattern.
    Spencer MJ; Kameneva T; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33684894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex.
    Chen X; Wang F; Fernandez E; Roelfsema PR
    Science; 2020 Dec; 370(6521):1191-1196. PubMed ID: 33273097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.