These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38458079)

  • 21. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competing mechanisms in fracture of staggered mineralized collagen fibril arrays.
    Xu M; An B; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105761. PubMed ID: 36905708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multiscale fracture model to reveal the toughening mechanism in bioinspired Bouligand structures.
    Nie Y; Li D
    Acta Biomater; 2024 Mar; 176():267-276. PubMed ID: 38296014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level.
    Katsamenis OL; Chong HM; Andriotis OG; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():152-65. PubMed ID: 23131790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Damage tolerance of lamellar bone.
    Razi H; Predan J; Fischer FD; Kolednik O; Fratzl P
    Bone; 2020 Jan; 130():115102. PubMed ID: 31669254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The elasto-plastic nano- and microscale compressive behaviour of rehydrated mineralised collagen fibres.
    Groetsch A; Gourrier A; Casari D; Schwiedrzik J; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Jul; 164():332-345. PubMed ID: 37059408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extrafibrillar matrix yield stress and failure envelopes for mineralised collagen fibril arrays.
    Speed A; Groetsch A; Schwiedrzik JJ; Wolfram U
    J Mech Behav Biomed Mater; 2020 May; 105():103563. PubMed ID: 32279843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix.
    Lai ZB; Yan C
    J Mech Behav Biomed Mater; 2017 Jan; 65():236-247. PubMed ID: 27592292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone toughening through stress-induced non-collagenous protein denaturation.
    Wang Z; Vashishth D; Picu RC
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1093-1106. PubMed ID: 29658056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes.
    Nanda R; Hazan S; Sauer K; Aladin V; Keinan-Adamsky K; Corzilius B; Shahar R; Zaslansky P; Goobes G
    Acta Biomater; 2022 May; 144():195-209. PubMed ID: 35331939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.
    Dong XN; Guda T; Millwater HR; Wang X
    J Biomech; 2009 Feb; 42(3):202-9. PubMed ID: 19058806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An embedded element based 2D finite element model for the strength prediction of mineralized collagen fibril using Monte-Carlo type of simulations.
    Sharma R; Awasthi A
    J Biomech; 2020 Jul; 108():109867. PubMed ID: 32635994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanics of mineralized collagen fibrils in bone.
    Nair AK; Gautieri A; Chang SW; Buehler MJ
    Nat Commun; 2013; 4():1724. PubMed ID: 23591891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperative deformation of mineral and collagen in bone at the nanoscale.
    Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone collagen network integrity and transverse fracture toughness of human cortical bone.
    Willett TL; Dapaah DY; Uppuganti S; Granke M; Nyman JS
    Bone; 2019 Mar; 120():187-193. PubMed ID: 30394355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Teleost fish scales amongst the toughest collagenous materials.
    Khayer Dastjerdi A; Barthelat F
    J Mech Behav Biomed Mater; 2015 Dec; 52():95-107. PubMed ID: 25457170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressive properties of cortical bone: mineral-organic interfacial bonding.
    Walsh WR; Guzelsu N
    Biomaterials; 1994 Jan; 15(2):137-45. PubMed ID: 8011860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.