These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38458277)
21. Sustainable, Highly Efficient and Superhydrophobic Fluorinated Silica Functionalized Chitosan Aerogel for Gravity-Driven Oil/Water Separation. Zhu Z; Jiang L; Liu J; He S; Shao W Gels; 2021 Jun; 7(2):. PubMed ID: 34199558 [TBL] [Abstract][Full Text] [Related]
22. [Ambient pressure synthesis and characterization of silica aerogel as adsorbent for dieldrin]. Sha W; Liu RP; Liu HJ; Qu JH Huan Jing Ke Xue; 2008 Dec; 29(12):3415-20. PubMed ID: 19256378 [TBL] [Abstract][Full Text] [Related]
23. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Bangi UK; Venkateswara Rao A; Parvathy Rao A Sci Technol Adv Mater; 2008 Jul; 9(3):035006. PubMed ID: 27878003 [TBL] [Abstract][Full Text] [Related]
24. From Fragile to Resilient Insulation: Synthesis and Characterization of Aramid-Honeycomb Reinforced Silica Aerogel Composite Materials. Schwan M; Rößler M; Milow B; Ratke L Gels; 2015 Dec; 2(1):. PubMed ID: 30674133 [TBL] [Abstract][Full Text] [Related]
25. Heat-Treated Aramid Pulp/Silica Aerogel Composites with Improved Thermal Stability and Thermal Insulation. Li Z; Shen K; Hu M; Shulga YM; Chen Z; Liu Q; Li M; Wu X Gels; 2023 Sep; 9(9):. PubMed ID: 37754430 [TBL] [Abstract][Full Text] [Related]
26. Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation. Ke W; Ge F; Shi X; Zhang Y; Wu T; Zhu X; Cheng Y; Shi Y; Wang Z; Yuan L; Yan Y Int J Biol Macromol; 2024 Mar; 260(Pt 1):129245. PubMed ID: 38191109 [TBL] [Abstract][Full Text] [Related]
27. Tuning bio-aerogel properties. Part 3: Exploring silica-pectin composite aerogels for drug delivery. Groult S; Buwalda S; Budtova T Biomater Adv; 2024 Oct; 163():213954. PubMed ID: 38996543 [TBL] [Abstract][Full Text] [Related]
28. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks. Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660 [TBL] [Abstract][Full Text] [Related]
29. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277 [TBL] [Abstract][Full Text] [Related]
31. Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities. Wei TY; Lu SY; Chang YC J Phys Chem B; 2008 Sep; 112(38):11881-6. PubMed ID: 18729501 [TBL] [Abstract][Full Text] [Related]
32. Transparent silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient conditions on omniphobic liquid substrates. Marszewski M; King SC; Galy T; Kashanchi GN; Dashti A; Yan Y; Li M; Butts DM; McNeil PE; Lan E; Dunn B; Hu Y; Tolbert SH; Pilon L J Colloid Interface Sci; 2022 Jan; 606(Pt 1):884-897. PubMed ID: 34454313 [TBL] [Abstract][Full Text] [Related]
33. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
34. Robust Silica-Agarose Composite Aerogels with Interpenetrating Network Structure by In Situ Sol-Gel Process. Yang X; Jiang P; Xiao R; Fu R; Liu Y; Ji C; Song Q; Miao C; Yu H; Gu J; Wang Y; Sai H Gels; 2022 May; 8(5):. PubMed ID: 35621601 [TBL] [Abstract][Full Text] [Related]
35. Improving the comprehensive properties of chitosan-based thermal insulation aerogels by introducing a biobased epoxy thermoset to form an anisotropic honeycomb-layered structure. Zhang C; Song S; Cao Q; Li J; Liu Q; Zhang S; Jian X; Weng Z Int J Biol Macromol; 2023 Aug; 246():125616. PubMed ID: 37391003 [TBL] [Abstract][Full Text] [Related]
36. Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery. Zhang C; Dai C; Zhang H; Peng S; Wei X; Hu Y Mar Pollut Bull; 2017 Sep; 122(1-2):129-138. PubMed ID: 28666592 [TBL] [Abstract][Full Text] [Related]
37. Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. Liu Q; Liu Y; Feng Q; Chen C; Xu Z J Hazard Mater; 2023 Jan; 441():129965. PubMed ID: 36122524 [TBL] [Abstract][Full Text] [Related]
38. Hydrophobic Cellulose Acetate Aerogels for Thermal Insulation. Zhang S; Yang Z; Huang X; Wang J; Xiao Y; He J; Feng J; Xiong S; Li Z Gels; 2022 Oct; 8(10):. PubMed ID: 36286172 [TBL] [Abstract][Full Text] [Related]
39. Improved catalytic activity on the thermal decomposition of ammonium perchlorate and efficient adsorption of uranium using a novel ultra-low density Al Liao J; Zhang Y; Zhang L J Hazard Mater; 2020 Apr; 387():122015. PubMed ID: 31927356 [TBL] [Abstract][Full Text] [Related]
40. Flexible, Strong, Multifunctional Graphene Oxide/Silica-Based Composite Aerogels via a Double-Cross-Linked Network Approach. Zheng Z; Zhao Y; Hu J; Wang H ACS Appl Mater Interfaces; 2020 Oct; 12(42):47854-47864. PubMed ID: 33045826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]