These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 38458512)
41. Challenges in Three-Dimensional Printing of Bone Substitutes. Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596 [TBL] [Abstract][Full Text] [Related]
42. Advances on Bone Substitutes through 3D Bioprinting. Genova T; Roato I; Carossa M; Motta C; Cavagnetto D; Mussano F Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977633 [TBL] [Abstract][Full Text] [Related]
43. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression. González Díaz EC; Sinha S; Avedian RS; Yang F Acta Biomater; 2019 Nov; 99():18-32. PubMed ID: 31419564 [TBL] [Abstract][Full Text] [Related]
44. [Uses of 3D printing and Bioprinting for pre-implant bone reconstruction in Oral Surgery]. Catros S; Fénelon M; De Oliveira H; Shayya G; Babilotte J; Chassande O; Fricain JC Med Sci (Paris); 2024 Jan; 40(1):92-97. PubMed ID: 38299910 [TBL] [Abstract][Full Text] [Related]
45. [Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering]. Yang Z; Li C; Sun H Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):141-6. PubMed ID: 27273987 [TBL] [Abstract][Full Text] [Related]
46. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Chae S; Cho DW Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520 [TBL] [Abstract][Full Text] [Related]
48. Personalized 3D printed bone scaffolds: A review. Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670 [TBL] [Abstract][Full Text] [Related]
49. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649 [TBL] [Abstract][Full Text] [Related]
50. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
51. Post-decellularized printing of cartilage extracellular matrix: distinction between biomaterial ink and bioink. Mokhtarinia K; Masaeli E Biomater Sci; 2023 Mar; 11(7):2317-2329. PubMed ID: 36751955 [TBL] [Abstract][Full Text] [Related]
52. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration. Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367 [TBL] [Abstract][Full Text] [Related]
53. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
54. [The application of 3D bioprinting in ophthalmology]. Dong BR; Zhou XB; Tao H Zhonghua Yan Ke Za Zhi; 2023 Dec; 59(12):1065-1068. PubMed ID: 38061909 [TBL] [Abstract][Full Text] [Related]
55. Smart biomaterials: From 3D printing to 4D bioprinting. Amukarimi S; Rezvani Z; Eghtesadi N; Mozafari M Methods; 2022 Sep; 205():191-199. PubMed ID: 35810960 [TBL] [Abstract][Full Text] [Related]
56. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. O'Shea DG; Curtin CM; O'Brien FJ Biomater Sci; 2022 May; 10(10):2462-2483. PubMed ID: 35355029 [TBL] [Abstract][Full Text] [Related]
57. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting. Dong Y; Zhou X; Ding Y; Luo Y; Zhao H Biochem Biophys Res Commun; 2024 Oct; 730():150339. PubMed ID: 39032359 [TBL] [Abstract][Full Text] [Related]
58. Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering. Zhang X; Yang Y; Yang Z; Ma R; Aimaijiang M; Xu J; Zhang Y; Zhou Y Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614258 [TBL] [Abstract][Full Text] [Related]
59. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. Meng F; Meyer CM; Joung D; Vallera DA; McAlpine MC; Panoskaltsis-Mortari A Adv Mater; 2019 Mar; 31(10):e1806899. PubMed ID: 30663123 [TBL] [Abstract][Full Text] [Related]